
Taking Smart Space Users Into the
Development Loop

Marc-Oliver Pahl
TU München
Boltzmannstr. 3
85748 Garching, Germany
pahl@net.in.tum.de

Georg Carle
TU München
Boltzmannstr. 3
85748 Garching, Germany
carle@net.in.tum.de

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
UbiComp’13 Adjunct, September 8–12, 2013, Zurich, Switzerland.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2215-7/13/09...$15.00.

http://dx.doi.org/10.1145/2494091.2497320

Abstract
Smart spaces need driver services to connect accessed hard-
ware and orchestration services to realize scenarios. There
is a problem of scale in software development for smart
spaces because it is done by few. It is also problematic
that those few decide about what is supported and devel-
oped. We propose to provide users with tools for commu-
nity based development of driver and orchestration services.
We analyze the requirements for a middleware framework
to allow distributed development. We present necessary ex-
tensions that promote community based development: (1)
a repository for interface definitions, (2) App Store and App
Manager, and (3) multi-dimensional ratings.
Finally we present how smart space software development
can be facilitated using our Distributed Smart Space Or-
chestration System (DS2OS).

Author Keywords
community based development; crowdsourcing; ontology;
heterogeneity; driver; orchestration; smart space

ACM Classification Keywords
D.2.11 [Software Architectures]: Domain-specific architec-
tures; K.4.3 [Organizational Impacts]: Automation; H.1.2
[User/Machine Systems]: Human factors

General Terms
Economics, Design, Human Factors, Management

Introduction
Smart spaces have a fundamental problem: who programs
the software? The heterogeneous hardware devices that
make spaces smart need software driver services to be-
come interoperable with middleware [18] that is used. Sce-
narios from areas like user convenience, security and safety,
support for elderly or disabled, or energy saving [10] require
the development of orchestration services that implement
the scenario-specific workflows.

Today only geeks are able to make and maintain Do-It-
Yourself (DIY) installations [4]. Even after the hardware is
installed (by professionals or DIY), maintaining and extend-
ing the software of a smart space remain difficult. Skills and
enthusiasm at the user’s side often exist [4, 14, 13], but the
support for developers by middleware frameworks is weak
or missing.

Middleware

Services

Sensors/ Actuator Hardware

Figure 1: Middleware decouples
the hardware from the
orchestration logic.

After introducing three current middleware designs for smart
spaces we identify requirements for community based soft-
ware development for smart spaces. We present three core
concepts that enable the user community to develop and
share drivers and orchestration services: (1) a repository
for interface definitions, (2) an App Store and an App
Manager, and (3) multi-dimensional ratings. Finally
we show how our Distributed Smart Space Orchestration
framework facilitates the creation of smart space services.

Middleware for Smart Spaces

2.2 Prevalent abstractions

Today, home technology can be seen as presenting one
of two abstractions to users and developers. The first is
the appliance abstraction that provides the same inter-
face that a monolithic, fixed-function device would. It is
used for most home security and home automation sys-
tems where the set of devices and tasks are both closed.
This has the advantage of offering (potentially) simpler
user interfaces and simpler integration across the set of
involved devices. However, it inhibits extensibility and
application development because integration with third-
party devices and software is typically not possible. As a
result, the security, audio-video, and automation systems
are mutually isolated in many homes [7, 22].

The second abstraction is a network-of-devices,
which arises from interoperability protocols offering
standardized interfaces to devices. This means that, in
theory, applications can remotely control devices and de-
vices can be integrated to accomplish tasks. For instance,
DLNA allows some TVs to play media content from a
computer. In practice, it leaves too much for users and
developers to do for themselves. Users interact with each
device’s own management interface and application de-
velopers must deal with all the sources of heterogeneity
mentioned above.

2.3 The PC abstraction

The abstractions prevalent today demonstrate the inher-
ent tension between ease of management on one side
and extensibility (for both applications and devices) on
the other. The appliance abstraction can provide simple
user management (at least for the included devices), but
typically does not accommodate new devices and appli-
cations. On the other hand, the network-of-devices ab-
straction readily incorporates new devices, but does not
provide the needed support for developing cross-device
applications or simple management tools.

We propose to resolve this tension by presenting the
abstraction of a PC. Network devices appear as con-
nected peripherals, and tasks over these devices are akin
to applications that run on a PC. Users extend their home
technology by adding new devices or installing new ap-
plications without any guesswork with respect to com-
patibility. They implement desired access control poli-
cies by interacting with the operating system, rather than
with individual devices and applications. Finally, appli-
cations are written against higher-level APIs, akin to ab-
stract PC driver interfaces, where developers do not have
to worry about low-level details of heterogeneous de-
vices and their connectivity. Our proposal is inspired by

Device connectivity layer

Device functionality layer

Application layer

Management layer

Challenge

addressed

Heterogeneity

src. handled

Incremental growth

App development

Management

App development

Incremental growth

Incremental growth

User control

Coordination

Device

Topology

Figure 1: Layers in HomeOS and their considerations

current PC OSes that make some network devices (e.g.,
printers) appear local. We take this design to its logical
extreme, making all network devices appear local, while
tackling other challenges of the home environment.

3 HomeOS architecture

HomeOS uses a layered architecture (Figure 1) to bri-
dle the complexity of the home environment and address
the challenges mentioned in the previous section. Be-
low, we describe each of the four layers in detail, but
briefly, the key elements of our approach are: (i) pro-
viding users with management primitives and interfaces
that align with how they want to manage and secure their
home technology, (ii) providing application developers
with high-level APIs that are independent of low-level
details of devices, and (iii) having a kernel that is inde-
pendent of specific devices and their functionality. Our
design borrows heavily from traditional OSes but also
differs from them in a few key ways.

3.1 Device connectivity layer

The Device Connectivity Layer (DCL) solves the prob-
lems of discovering and associating with devices. This
includes dealing with issues arising from protocols de-
signed to operate only on one subnet (e.g., UPnP) as
well as connecting to devices with multiple connectivity
paradigms (e.g., a smartphone on WiFi vs. 3G).

The DCL provides higher layers with handles for ex-
changing messages with devices, but it attempts to be as
thin as possible, avoiding any understanding of device
semantics. There is one software module in the DCL for
each protocol (e.g., DLNA and Z-Wave). This module
is also responsible for device discovery, using protocol-
specific methods (e.g., UPnP probes). If it finds an un-
known device it passes that up to the management layer
where the proper action can be taken.

The DCL frees developers from worrying about some
of the most pernicious issues in using distributed hard-

Figure 2: HomeOS [6].

Smart spaces should be orchestrated via software [7, 5, 15,
3, 18]. Software based orchestration allows flexible shared
use of hardware devices [10] by reconfiguring and deploying
services dynamically for realizing different scenarios.

Middleware helps realizing software orchestration by pro-
viding an abstract interface to the hardware (see Fig. 1),
and by facilitating software development.
Abstract interfaces to the functionality of the hardware

combined with discovery mechanisms allow decoupling soft-
ware from specific hardware devices. Device functionality
(e.g. is-a lamp) can be programmed and found based on ab-
stract interfaces instead of concrete device addresses. This
is an important step towards distributed software develop-
ment, enabling services to be developed in one smart space
and run in other smart spaces (portability).

To take users into the development loop, programming
must be easy. Common middleware facilitates software
development process by introducing consistent interfaces
on top of heterogeneous hardware devices, and by offering
common functionality for services which thereby does not
have to be reprogrammed for each service, as it is the case
for access control for instance.

Subsequently, three middleware designs are presented with
focus on the abstraction they use, the support they provide
for developers, and how devices are integrated into the plat-
form. Device integration is especially important as devices
that can be used for software orchestration define the pos-
sibilities of the system, because devices are the interface
between the software and the physical world.

Microsoft – HomeOS

At Microsoft HomeOS is designed [7, 6]. Orchestration
services run on a central computer using local device drivers
as interfaces to distributed devices.

The HomeOS middleware uses so-called roles as abstrac-
tion. A role is a collection of method signatures. Roles
are intended for device drivers [6]. To implement a certain
role, a device driver has to offer the methods specified in
its role (see Device Functionality Layer in Fig. 2).

The system offers functionality to control and mediate ac-
cess to devices and to add and remove Applications and
devices. Services are implemented as .net programs.

Drivers and orchestration services offer the same API. Im-
plementations for specific protocols (e.g. z-wave) can be
used as base for new device drivers.

Berkeley – Building Application Stack (BAS)

The University of California in Berkeley develops the Build-
ing Application Stack (BAS) [12, 5].

of objects and provides a query API for applications to effi-
ciently refer to the desired components in a portable way.

Of course, this metadata can also be hardcoded in look-
up tables or configuration files, as it is often done in today’s
building apps, but this ad-hoc approach is error-prone and in-
efficient. Having each application create its own view of the
building requires all authors to have a deep understanding of
each building’s design and requires all applications to be up-
dated if a change is made or error corrected in the building
model. Moreover, creating an easy to use interface once ben-
efits all applications and lowers the bar for new development.

We make the following contributions: (1) we propose a
fuzzy query API and graph representation of building meta-
data (2) we construct a hierarchical driver model for building
components, minimizing building specific code and (3) we
evaluate BAS by implementing two control applications, ex-
ecuted on two real buildings on campus, first using only the
existing building control protocol and then again using BAS.
2 Architecture

Query-based API

Building
Remote

App App App

Driver

Driver Driver

Driver

Driver

Functional links,
Spatial m

ap

Interconnect Abstraction

HW HW HW

Figure 1. BAS layered architecture.

The goal of BAS is to provide an API and runtime that
allow applications to run on a wide range of buildings. At
the same time, BAS aims to minimize the effort required to
set up the system on a new building by factoring out common
components and partially automating metadata collection.

The BAS architecture is shown in Figure 2. Buildings
with digital controls contain sensors and actuators wired to a
number of controller panels: embedded computers with ana-
log input and output ports. In turn, these controllers are net-
worked with serial or ethernet links and optional routers and
gateways, connecting to a computer with a graphical inter-
face for monitoring the building. Buildings often have mul-
tiple independent control networks, such as a lighting control
system and an HVAC controller.

At the lowest level, BAS interfaces with the building hard-
ware through a control protocol such as BACnet or OPC. The
protocol exposes a network view of the building components
consisting of a point name, control panel identifier and op-
tional description string for each sensor output and actuator.
For example, a point named “SDH.AH1A.SF VFD:INPUT
REF 1” on panel “SDH.MBC-01” represents the speed input
to the variable-frequency drive controlling the supply fan in

one of our buildings. This point takes a value between 0 and
100 corresponding to a scale of off to maximum speed for
the fan. The BAS interconnect abstraction layer acts as a
hardware interface, exposing all points from different con-
trol networks with different protocols in a uniform way by
using the sMAP architecture, as discussed in Section 5.

While having access to building sensor and actuator
points is sufficient for implementing applications, point
names and functionality are very building-specific, thus pro-
gramming at this level leads to non-portable code. The BAS
driver layer abstracts groups of points into functional objects
with standardized methods. Each driver type must expose
at least a minimum predefined interface. For example, fan
drivers expose “get speed” and “set speed” methods. These
methods apply to many different fan designs, e.g. variable
speed, 3-speed, or on/off fans. Drivers can be built up hierar-
chically so that common functionality is implemented once,
as shown in Figure 4.

The objects exposed by drivers correspond to physical
components within the building, e.g. chillers, light banks,
electrical circuits, etc. Drivers abstract the inner workings of
these devices, but since buildings are all constructed differ-
ently the functional and spatial relationships between these
objects are crucial. Being able to answer which air han-
dler serves a particular room or which circuit powers a light
bank is key to expressing control actions in a general way.
BAS captures functional relationships in a directed graph of
“supplies” relations, effectively capturing airflow loops, wa-
ter loops and electrical trees. In addition, BAS incorporates
spatial tags stored in a GIS database, allowing us to answer
queries such as, “select the lights for all rooms near win-
dows” or “select the air handler that supplies room 123.”

At the highest level, BAS provides a query-based API for
writing applications. The API consists of a selector query
for choosing a set of driver objects corresponding to build-
ing components based on object name, type, attributes, func-
tional relationships and spatial relationships. Each object
type has a predefined minimal set of methods, i.e. sen-
sor readings and actuation capabilities. The application can
make use of these guaranteed methods or discover all avail-
able methods. Similarly, objects can be selected with a pre-
cise query, e.g. “the thermostat for room 123,” or by explor-
ing the graph of functional relationships, e.g. “all tempera-
ture sensors upstream of room 123.” Applications access the
BAS API through a web service and can be written in any
language.

3 Query Interface
The BAS query interface is designed to allow applica-

tion authors to select objects based on type, attributes and
functional or spatial relationships. This allows authors to de-
scribe the particular sensor or actuator that the application
requires rather than hardcoding a name or tag that may not
apply in differently designed buildings.

Queries are expressed in terms of names indicated with a
$ prefix, tags starting with # and relationships indicated by <
and > operators with A > B meaning that A supplies or feeds
into B. For example, an air handler might supply variable
air volume (VAV) boxes that supply rooms; a whole building

73

Figure 3: BAS [12].

BAS [12] can be distributed. It realizes service portability
via abstract driver interfaces to devices. The Building Op-
erating System Services (BOSS) [5] provide supplementary
functionality for easing service development.

Like in HomeOS the system abstraction is method based.
So-called classes bundle the methods that a driver for a
certain device type must offer. Coupling of orchestration
services is not described.

The framework provides functionality for transactions, au-
thorization, and time series. Services for BAS are written
in Python.

As in HomeOS the development of device drivers is struc-
tured in different hierarchical steps (see Fig. 3). Only the
highest level of abstraction is meant to be used by service
programmers.
BAS uses sMAP1 as low-level driver to sensors and actu-
ators. sMAP is an open-source framework that provides
a web-based RESTful Application Programming Interface
(API) as abstraction on top of the heterogeneous device
protocols of the sensors and actuators.

TU München – Virtual State Layer (VSL)

The Virtual State Layer (VSL) is developed at the Tech-
nische Universität München [17]. The VSL is the middle-

gl
ob

al
ly

 s
ha

re
d

Gateway Services
3

Virtual State Layer
4

Orchestration Services
5

Physical World
1

Sensors/ Actuators
2

M
od

el
 r

ep
os

ito
ry

A
pp

 s
to

re

4g

5g

de
ve

lo
ps

uses

Figure 4: DS2OS [17]
ware of the Distributed Smart Space Orchestration System
(DS2OS). DS2OS realizes a distributed Service Oriented
Architecture (SOA) for smart spaces.

1http://code.google.com/p/smap-data/

While the other middleware designs use collections of method
signatures as abstract interface the VSL uses hierarchically
structured tuples. The VSL tuples are basically key-value
pairs that form a tree. The tree representations of the ab-
stract interfaces of services are called models.

VSL offers functionality for communication, access control,
transactions, and persistence. Information tuples are stored
within VSL independent of the connected services or de-
vices. The VSL is not only the information broker between
services but an active component in DS2OS with the per-
sistence it offers.

The communication of VSL is not based on remote pro-
cedure calls but on a distributed tuple space [8] (see Fig.
4). This allows to use a fixed set of methods on vari-
able data while the other middleware designs have variable
methods and variable data.

Unlike other frameworks DS2OS does not differentiate be-
tween driver and orchestration services. Both are regular
services. Driver functionality is divided into a part that is
is directly interfacing a device’s protocol, and a part that
provides higher level abstractions. Different to the other
designs, the information between the different driver stages
is brokered over the middleware. This gives additional flex-
ibility and enables distributed development of driver com-
ponents.

Requirements for Community Based Devel-
opment of Services for Smart Spaces
To allow community based development services must be
portable. Portability leads to the following requirements on
a middleware design:

• Abstract interfaces on top of the hardware to al-
low portability of services.
The roles, classes, and models of the presented mid-
dleware designs fulfill this property.

http://code.google.com/p/smap-data/

• Published description of service interfaces to al-
low the discovery and (re)use of services.
This is possible for all named middleware designs.

• Support of dynamic binding / lose coupling of ser-
vices by the middleware to allow the provisioning of
services at runtime.
This feature often comes with the availability of ab-
stract interfaces and the support to discover func-
tionality as such features automatically decouple the
different software components of a system.

All presented middleware designs fulfill the requirements for
community based service development.

Necessary Extensions for Community Based
Development
To promote the community based development of smart
space software, the following extensions to the presented
frameworks are necessary.

A Repository for Interface Definitions

To allow distributed development of components and to
promote convergence, it is essential to share the abstract
interface definitions (roles / classes / models).

Only known abstractions can be used by programmers. Es-
pecially with the high heterogeneity of smart devices it is
unlikely that a programmer of a software will possess all
devices she develops software for on the one hand.
On the other hand, driver service developers can only reuse
the abstract interfaces they know for the device types they
want to support.

Therefore it is highly beneficial to create a global reposi-
tory that contains the abstract interface definitions of the
services available for smart spaces.

HomeOS has a HomeStore [6] that provides services and
meta data about dependencies to end users. It could be

extended to provide not only information for end users
but also the proposed interface definitions (roles) for de-
velopers. BAS [12] does not mention a global repository.
DS2OS has a global Model Repository for interface defini-
tions, which serves the described purpose.

A Global App Store and a Local App Manager

People enjoy developing software [14, 19] and like sharing
it. The open-source movement [13] and the App economy
[1, 16, 20] are successful examples for community based
software development.

The success of the App Store first for smartphones and then
also for PCs shows that it helps to have a convenient and
centralized distribution channel for software.

To allow the sharing of software services, a global soft-
ware repository (App Store) is most suitable. It should
provide developers with functionality to (1) share their soft-
ware, (2) distribute updates, (3) get social fame, (4) earn
money, (5) receive feedback, and (6) run tests.

Developers can offer, manage, and update their software
over an App Store, which provides a channel to the cus-
tomers. During development the App Store can be used
for controlled beta tests. At normal operation of a service
the App Store can be used for automatic deployment of
updates and as feedback channel for receiving encour-
aging comments, fame, and money [16].

End users benefit from an App Store by having a broad
base of software services (e.g. device drivers, orchestration
services) at hand. With the presented sharing mechanism,
skilled users can contribute the extensions they developed
for their smart spaces to the community. This allows users
that are unable or unwilling to develop software components
for smart spaces to benefit by using the software from the
community App Store.

Sharing services results in a big amount of Application
scenarios and supported devices in short time. This at-
tracts users and new developers (see App economy for
smart phones [1, 16, 20]). With community based devel-
opment of driver services the proposed approach solves the
scalability problem of the high number of heterogeneous
hardware devices available and already deployed.

To deploy and manage the software in a smart space
instance, a local App Manager is needed. It facilitates
the installation of software services (e.g. by automating
it) and allows automated updates (e.g. of device drivers).
The local counterparts of an App Store in the smartphone
ecosystem, in operating systems, or in software itself ex-
emplify how a local App Manager works with features like
automatic update checks and installations. Different to
the smartphone domain, the heterogeneity of smart spaces
brings the additional requirement that an App Manager
for smart spaces must check dependencies on required re-
sources (including available hardware devices for sensing
and actuating) before installing software.

The HomeStore of HomeOS [7, 6] distributes software. To
communicate the dependencies, each service brings a man-
ifest describing which roles must be present inside a space
to run the service. HomeStore also suggests hardware to
users which they need in order to run a service and have a
certain functionality in their space. BAS does not describe
the functionality of a software repository. For DS2OS we
are currently developing a local App Manager and an App
Store as described, including automated provisioning of ser-
vices (e.g. device driver services), see 5g in Fig. 4.

The local App Manager of DS2OS takes care of automated
updates of the local services. It collects the runtime
behavior (e.g. errors) of a service and reports this infor-
mation in a privacy conform way to the App Store. From
there other potential users and the developers can be in-

formed leading to a continuous evaluation of the runtime
behavior of services. The Approach is suitable to identify
bugs quickly. To our knowledge such a mechanism does
not exist in a fully automated way today. Finally the local
App Manager allows remote management, e.g. if some
family members (e.g. children) are more experienced and
want to support the others (e.g. parents).

Different to the other middleware designs, DS2OS drivers
are regular services allowing developers to benefit from the
full set of DS2OS features. The approach allows the App
Store and the local App Manager to handle drivers like any
other service. The service manager can provision drivers
without user intervention if devices within a space can be
discovered with protocol mechanisms and drivers are avail-
able from the App Store.

With the drivers being regular services and the automated
provisioning via the local App Manager users automatically
and immediately benefit from drivers that others developed.
For DS2OS we implemented a scenario to show that this
is feasible using managed network devices communicating
over SNMP. Especially in fully automated processes quality
assurance is important. A solution for community based
quality assurance is introduced next.

Multi-Dimensional Ratings

A fundamental problem of smart spaces today is the het-
erogeneity in the hardware and the resulting heterogeneity
in the software interfaces and the protocols involved. As
described at the end of the App Store section an impor-
tant task is to develop device driver services. As mentioned
in the middleware section, such drivers offer an abstract
interface to a device family (e.g. lamps).

When distributing the software development it is natural
that without arbitration, diversity will emerge. If each de-
vice driver service for a member of a device family offers

a different abstract interface, the heterogeneity problem is
only shifted to a higher level of abstraction, preventing ser-
vice portability again. The necessity for convergence Ap-
plies to services that offer abstract information as well. The
DS2OS architecture makes use of such services to modu-
larize services and to extend the functionality offered by the
framework which requires to converge their interfaces too.
To promote convergence in the abstract service interfaces
and to assure good service quality, we propose a commu-
nity based rating process for the interface repository and the
App Store. Our proposal is based on explicit and implicit
ratings of abstract interfaces and service implementations.
Our proposal scales better and is more democratic than Ap-
ples individual App software checks2 as it is not company
controlled but based on the user community. At the same
time our proposal uses more channels and thereby evalua-
tion criteria than Google’s approach3 with automated tests.
Both can be added to our proposed architecture.

We introduce different ratings for abstractions in the inter-
face repository, and for services in the App Store. Explicit
(subjective) feedback is collected from the community in
form of numeric ratings (e.g. 1=worst..5=best). Implicit
(more objective) feedback is generated by correlating data
from the interface repository with the App Store and by
collecting anonymous feedback from local App Managers.

We introduce the following ratings for models:
(1) The use of abstractions available in the interface
repository is automatically correlated with the software in
the App Store to identify the objective popularity of an
abstraction. The popularity depends on the number of ser-
vices using the abstraction and the popularity of those ser-
vices. Knowing the popularity of an abstract interface helps

2http://store.apple.com/
3http://play.google.com/

developers to use popular abstractions, as they are sup-
posed to have the biggest device installation base making
new services more attractive. In turn developers of device
drivers can use the abstractions that are currently most of-
ten used by orchestration services, making their new driver
more attractive. (2) Developers can manually rate the sub-
jective popularity of abstractions based on the usability
and the quality of the abstract interfaces.

The knowledge of the popularity of a model leads to natural
selection. Developers will support more popular models as
they seem to be better and as they are spread wider. Driver
developers will use the more popular models as they want
to be compatible with the popular services. This automatic
feedback loop leads to convergence of models.

For services we introduce the following metrics:
(3) The recent amount of downloads of a service from
the App Store is monitored. (4) The amount of currently
running copies of a service is monitored via anonymous
feedback from the local App Managers. (5) The amount
of service crashes and the relative uptime of services
are monitored via anonymous feedback from the local App
Managers. (6) End users can manually rate services.

The knowledge of the popularity of a service leads to natural
selection. The metrics (3-6) will be used as quality indicator
by people browsing the App store for interesting services.
The error metric (5) helps users to identify stable services
and developers to improve their services.

All proposed metrics must be publicly available (e.g. via
pages of the App store and the model store). This way a
natural selection of models and services will happen.

Support of DS2OS for Developing Software
for Smart Spaces
DS2OS is designed to facilitate development of software
for smart spaces. The interaction paradigm of the VSL

http://store.apple.com/
http://play.google.com/

middleware as tuple space with a fixed set of methods
and variable data facilitates the creation of services sig-
nificantly as it separates data from functionality [9]. The
separation reduces complexity and makes the system better
extensible. Fixed methods can be learned and memorized
better than the method based interfaces often used by other
middleware designs. Additionally the fixed method set can
easily be transferred into symbols for visual programming.
A visual programming interface facilitates programming and
enables it for beginners [11].

The abstract interface of a DS2OS service is a tree of nodes
that is called model. Thus the abstract interface of a
DS2OS device driver service describes the properties of
the physical device it connects to the middleware. Creat-
ing a list of properties as abstract interface is more at hand
than creating method signatures.

The model repository is the ontology [2] of a DS2OS
space. Thus tools for context modeling can be used to cre-
ate the abstract interface definitions. Especially for begin-
ning programmers such an abstraction is closer to reality
than method signatures.

Models can inherit from other models. This allows to ex-
tend models easily (e.g. by creating a model “specialLamp”
that is based on the basic “lamp”) and helps to converge
models. An extended model offers the nodes (interface) of
the model it extends and contains the type of the original
model for the discovery of the included parent functionality.
Creating a new model that is based on an existing model
facilitates the creation of abstract interfaces.

Additional to access control, transactions, publish-subscribe
mechanisms, and communication the VSL offers persis-
tence for software developers. In combination with the
fixed set of methods and the ontology abstraction software

developers can entirely focus on the logic they want to re-
alize in their orchestration services [9].

Handling all services equally allows the reuse of services
for other services. This helps to modularize functionality
and to chain services for raising the level of abstraction
(e.g. a service could deduce that it is day and offering
that information for all services in a space). As all services
are equal, the functionality software programmers can build
upon can easily be extended.

Conclusions
We presented DS2OS, an architecture for community based
software development for smart spaces. The paper iden-
tified general requirements on smart space orchestration
frameworks to enable community based development. Three
extensions to promote community based development were
presented: (1) a repository for interface definitions, (2) App
Store and App Manager, and (3) multi-dimensional ratings.
We showed how DS2OS exceeds the developer support of
other orchestration frameworks for smart spaces.

We are currently running a study on the developer friend-
liness of DS2OS. The extensions that we propose in this
paper are currently getting implemented.

Encouraged by recent surveys [4, 14] we believe that re-
alizing our proposal at large scale will lead to community
based software service development for smart spaces. The
proposed features allow non developers to benefit. We be-
lieve that the critical mass of developers already exists and
that only the proposed infrastructure is missing today.

Community based development may automatically solve the
scaling problem of driver development for the plethora of
smart devices and their protocols. At the same time it
empowers the community to choose the devices that should
be supported and to define which orchestration services are
considered interesting.

The resulting availability of smart spaces in more house-
holds, orchestration services that realize attractive scenar-
ios, and driver services that bring added value to the exist-
ing hardware may raise customer interests in smart space
technology possibly opening a huge market [4, 7, 14].

References
[1] Anthes, G. Invasion of the mobile apps. Communications

of the ACM 54, 9 (2011), 16–18.
[2] Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J.,

Nicklas, D., Ranganathan, A., and Riboni, D. A survey
of context modelling and reasoning techniques. Pervasive
and Mobile Computing 6, 2 (Apr. 2010), 161–180.

[3] Bourcier, J., Diaconescu, A., Lalanda, P., and McCann,
J. A. AutoHome: An Autonomic Management Frame-
work for Pervasive Home Applications. Transactions on
Autonomous and Adaptive Systems 6, 1 (Feb. 2011).

[4] Brush, A. J. B., Lee, B., Mahajan, R., Agarwal, S., Saroiu,
S., and Dixon, C. Home Automation in the Wild: Chal-
lenges and Opportunities. In CHI 2011, ACM Press (2011),
2115.

[5] Dawson-Haggerty, S., Krioukov, A., Taneja, J., Karandikar,
S., Fierro, G., Kitaev, N., and Culler, D. BOSS: Build-
ing Operating System Services. Proceedings of the 10th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI) (2013).

[6] Dixon, C., Mahajan, R., Agarwal, S., Brush, A. J., Lee, B.,
Saroiu, S., and Bahl, P. An operating system for the home.
In NSDI’12: Proceedings of the 9th USENIX conference
on Networked Systems Design and Implementation (Apr.
2012).

[7] Dixon, C., Mahajan, R., Agarwal, S., Brush, A. J., Lee, B.,
Saroiu, S., and Bahl, V. The Home Needs an Operating
System (and an App Store). In the Ninth ACM SIGCOMM
Workshop, ACM Press (2010), 1–6.

[8] Gelernter, D. Generative communication in Linda. ACM
Transactions on Programming Languages and Systems
(TOPLAS) (1985).

[9] Grimm, R., Davis, J., and Hendrickson, B. Systems Direc-
tions for Pervasive Computing. Proceedings of the Eighth
Workshop on Hot Topics in Operating Systems (2001).

[10] Holroyd, P., Watten, P., and Newbury, P. Why Is My Home
Not Smart? In Aging Friendly Technology for Health and
Independence. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2010, 53–59.

[11] Kaucic, B., and Asic, T. Improving introductory program-
ming with Scratch? In MIPRO, 2011 Proceedings of the
34th International Convention (2011), 1095–1100.

[12] Krioukov, A., Fierro, G., Kitaev, N., and Culler, D. Building
application stack (BAS). In BuildSys 2012 (2012), 72.

[13] Lerner, J., and Tirole, J. Some Simple Economics of Open
Source. The Journal of Industrial Economics 50, 2 (Mar.
2003), 197–234.

[14] Mennicken, S., and Huang, E. M. Hacking the natural
habitat: an in-the-wild study of smart homes, their devel-
opment, and the people who live in them. In Pervasive’12:
Proceedings of the 10th international conference on Per-
vasive Computing, Springer-Verlag (June 2012).

[15] Miori, V., Russo, D., and Aliberti, M. Domotic technolo-
gies incompatibility becomes user transparent. Communi-
cations of the ACM 53, 1 (Jan. 2010), 153.

[16] P, A., Matos, Christina, C, A., Vanessa, Michael, and Stijn.
Developer Economics 2012. Tech. rep., London, June 2012.

[17] Pahl, M.-O., and Carle, G. The Missing Layer - Virtualizing
Smart Spaces. In 10th IEEE International Workshop on
Managing Ubiquitous Communications and Services 2013
(MUCS 2013) (2013), 139–144.

[18] Raychoudhury, V., Cao, J., Kumar, M., and Zhang, D.
Middleware for pervasive computing: A survey. Pervasive
and Mobile Computing (Sept. 2012).

[19] Takayama, L., Pantofaru, C., Robson, D., Soto, B., and
Barry, M. Making technology homey: finding sources of
satisfaction and meaning in home automation. In Ubi-
Comp ’12: Proceedings of the 2012 ACM Conference on
Ubiquitous Computing (Sept. 2012).

[20] Vakulenko, M., Schuermans, S., Constantinou, A., and
Kapetanakis, M. Mobile Platforms: The Clash of Ecosys-
tems. Tech. rep., Nov. 2011.

	Introduction
	Middleware for Smart Spaces
	Microsoft – HomeOS
	Berkeley – Building Application Stack (BAS)
	TU München – Virtual State Layer (VSL)

	Requirements for Community Based Development of Services for Smart Spaces
	Necessary Extensions for Community Based Development
	A Repository for Interface Definitions
	A Global App Store and a Local App Manager
	Multi-Dimensional Ratings

	Support of DS2OS for Developing Software for Smart Spaces
	Conclusions
	References

