
The Missing Layer — Virtualizing Smart Spaces

Marc-Oliver Pahl and Georg Carle
Chair for Network Architectures and Services

Technische Universität München
Garching bei München, Germany

{pahl, carle}@net.in.tum.de

Abstract—With the Virtual State Layer (VSL), an ab-
straction for software-based orchestration of smart spaces is
presented. The aim of the VSL is to ease the programming of
orchestration software while not limiting its functionality.

The VSL primarily provides: the virtualization of that part
of the real world that can be orchestrated via sensors and actua-
tors, a base for the creation of portable orchestration services,
mechanisms to easily couple services, and the availability of
state over time.

The VSL approach is conceptually situated between
ontology-based systems and protocol-translating systems for
orchestrating smart spaces.

The concept and its implementation — a Java-based dis-
tributed P2P publish-subscribe system — are presented.

Keywords-autonomous computing; distributed computing;
smart space; app store

I. INTRODUCTION

Orchestration of spaces by humans can be decomposed
into perception (“it is dark”), cognition (“I would feel more
comfortable if I could see something; there is a light, and it
seems to be off”), and action (“turn the light on”) according
to models of cognitive psychology [1].

For automated space-orchestration, this process can be
mapped into software as a series of event-condition-action
(ECA) rules. The orchestration control flow described above
appears in natural language as “when it is dark outside and
someone enters roomA, switch the lights on”:〈

event
condition

action

〉
:

〈
motionDetectorroomA = >

lightSensoroutside < 5000Lux
lightsroomA := >

〉
(1)

Rule-based orchestration workflows are often the right level
of abstraction for smart space automation. It is straight-
forward to realise them in software and to adapt them by
reconfiguring the rule set to changed needs.

Sometimes more complex processing, such as machine
learning, is needed to accomplish orchestration goals. Pro-
gramming languages and execution hardware allow a high
level of complexity to be expressed in software. Software is
not the limiting factor in smart space orchestration.

Automated space orchestration is limited by hardware.
The sensors and actuators a space contains define which
physical state can be measured or changed, and thereby
which part of the real world can be orchestrated by soft-
ware. Connecting hardware and software is a fundamental
challenge for smart space orchestration.

Physical World

Sensors/ Actuators

Gateways

Virtual State

Services/ Applications Service

Knowledge Agent

Gateway Service

Sensor Actuator Sensor/ Actuator

Knowledge 
Brokerage

Gateway (e.g. web interface)

1

2

2a

3

4

5

Advanced Reasoning

Basic Reasoning

Knowledge Tree

Wednesday, January 23, 13

Figure 1. Logical layering of smart space orchestration.

One goal of this paper is to present an abstraction for
sensors and actuators in the software domain. It should
fit the needs of orchestration software and not introduce
limitations. Additionally it should enable site-independent
portable orchestration services. The Virtual State Layer
(VSL) presented here does so by virtualizing real world
states, sensors and actuators interact with. See Fig. 1.

Orchestration (done by machines or humans) can be
expressed as an Input-Processing-Output (IPO) model:

1) Input: Obtain relevant state.
2) Processing: Reason on the obtained state.
3) Output: Possibly change state.
Obtaining and changing state are common operations

when orchestrating spaces. The presented VSL aims to
alleviate the programming of services by offering support
for common tasks. The virtualization of physical state takes
the IPO tasks 1 and 3 out of the services’ domain (layers 1-3
in Fig. 1). Without need for writing code to obtain sensor
state or control actuator state, programmers can focus on the
orchestration logic. The availability of virtualized real-world
state simplifies smart space services significantly.

Allowing software to be the origin of states makes it pos-
sible to structure orchestration functions. Complex services
can be decomposed into better-manageable (reusable) small
services, which provide context for one another. Using the
VSL, software modules can be coupled and reused at need,
leading to a service-oriented architecture (SOA).



The availability of past state makes it possible to express
changes over time. Using the VSL, this becomes possible
even for simple ECA-based software, as all state present in
the abstraction can be used in rules.

In the following a middleware concept is presented that
uses state exchange as a communication principle between
smart space entities. The concept presented leads to spatial
and temporal decoupling of services and sensors/actuators.
It allows the full modularisation of functionality within the
software part of smart spaces.

II. CONCEPT VIRTUAL STATE LAYER

The new layer introduced in this work is called the Virtual
State Layer (VSL). Its purpose is to store and provide the
state used by smart space orchestration services.

The VSL is the only concept for inter-process commu-
nication in the control plane of a smart space. Non-control
traffic can be exchanged directly over the data plane; for
instance, software making music follow the inhabitant of a
house will not usually use the VSL for audio traffic.

The VSL is an extension of the tuple space interprocess
communication concept [2]. A tuple space is a shared data
structure among processes. Producers can create typed tuples
and put them into the tuple space. Consumers can search for
tuples and get notified when tuples become available that
match their search criteria. Consumed tuples are removed
from the tuple space.

The VSL adapts the tuple space concept to the distributed-
computing-environment smart space. The most significant
extensions to [2] are the introduction of hierarchical unique
addresses and permanent distributed storage of tuples.

The tuples inside the VSL will be called (information)
nodes in the following. They represent state information
of a smart space. The state can represent physical state of
the orchestrated space that gets measured by hardware or
inferred information created by software.

VSL nodes have unique addresses. The addresses are hier-
archically structured, generating a logical tree of nodes. The
hierarchy expresses the relationships between information.
Different information nodes can form a device, for instance,
with the device ID as a parent node and its components
as children. The same applies for service representations: a
device may contain multiple sensors, a room may contain
different devices, or a gateway may interface with different
devices. Services can transparently access nodes by their
addresses. Each process gets an address space that it can
freely organize.

Nodes inside the VSL can have more than one data type.
Types can be used by services to search for certain informa-
tion, e.g. temperature sensors within the smart environment.

The hierarchical addresses and the use of multiple data
types provide extended semantics to the original tuple space
concept.

VSL nodes have additional attributes to reflect the context
of smart space information. Version numbers and time
stamps are especially useful in the context of permanently
stored information and asynchronous coupling where when
information was produced is of interest. For instance, it
might be relevant for a heating service that the temperature
in the living room was measured yesterday night.

Access rights reflect the security and privacy needs of
smart spaces. For example, the VSL as basic abstraction for
smart space orchestration must provide means to prevent the
blinkenlights service1 from opening the front door. At the
same time, the values of motion sensors inside the bedroom
should not be accessible to the facility manager service that
automatically reports broken lights to an external company.
As with file systems, read and write access rights can be
set for identities (e.g. user or group IDs). Having an access
control scheme as part of the VSL as elementary information
manager allows security and privacy by design.

As distributed version of a tuple space, the VSL contains
a publish/subscribe system [3]. Nodes can be subscribed by
readerIDs. As soon as a node changes its value, the readerID
gets notified by the VSL. The hierarchical addressing allows
subscription of parent nodes that lead to notification of
updates in any readable child.

The introduction of the complex data types that goes
along with hierarchical addressing makes it necessary to
allow transactions on subtrees. Changing the IP address of
a network interface card without changing the broadcast
address would make no sense, for instance. Transactions are
realized via locks on subtrees. Every ID that has read or
write permission on a node can lock its subtree.

The permanent storage of tuples allows full spatial and
temporal decoupling of processes. It makes the history of a
space remain accessible.

Tuple spaces generally allow synchronous communication
via publish/subscribe: a consumer can subscribe to an ad-
dress and read out new tuples as soon as it is notified.

With the persistence of the VSL, this method of tight
coupling leads to unnecessary latency. The VSL has to store
a published value; then, it sends a notification to the receiver.
Finally, the receiver retrieves the value. Even if the storage
took no time, the round-trip time for the information to be
passed is doubled (notification + retrieval). This latency is
unnecessary and might be critical for applications requiring
low latency.

To provide fast synchronous interaction between entities,
the concept of virtual nodes is introduced. A virtual node
is an address that does not point to a node inside the VSL
but instead to a service acting as a consumer (set) or as a
producer (get) of information. The equivalent construct to a
virtual node in an operating system is a pipe. Access to a
virtual node is transparent for services.

1http://blinkenlights.net/



Machine 1
V

ir
tu

al
 S

ta
te

 L
ay

er

Knowledge 
Store

Knowledge 
Directory

ge
t
se
t

no
tif
y

su
bs
cr
ib
e

RunTime Environment

Knowledge Agent
Se

rv
ic

e

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

...

...

Protocol 
Adapter

M

A P

E

Sensors / Actuators

Le
ve

l o
f A

bs
tr

ac
tio

n

Physical World

Sm
ar

t 
G

at
ew

ay
s

K
no

w
le

dg
e 

A
ge

nt
s

Se
rv

ic
es

...

Machine II Machine III ...

Special Services
• User Interface
Interaction with humans. 

• Reasoner
Creates higher-order knowledge.

• Smart Gateway
Interface to the hardware.

• Service Manager (site-local)
Monitors, places, migrates, replicates services.

• Model Repository (global)
Provides and stores models.

• App Store (site-local/ global)
Provides services for local deployment.

Sy
st

em
 S

er
vi

ce
s

...

Thursday, January 24, 13

Figure 2. Architecture of the Distributed Smart Space Orchestration System with the VSL in the centre.

III. IMPLEMENTATION

The VSL is the foundation of the Distributed Smart Space
Orchestration System (DS2OS). See Fig. 2.

Smart space hardware is heterogeneous. The VSL is im-
plemented in Java to make it runnable on various hardware
platforms. Services using the VSL can be implemented
in other programming languages. Currently all services
mentioned in Fig. 2 are implemented in Java, but the user
interface service. It is running in PHP (see III-C4).

A. Peer-to-Peer Overlay

The VSL is spanned by a Peer-to-Peer (P2P) overlay of
so-called Knowledge Agents (KA). One Knowledge Agent
running inside a smart space makes the system work, as all
services can use it as node-exchange point.

To make use of the available resources, the VSL is meant
to run on all nodes of a space that are powerful enough. In
combination with node replication, this distribution provides
enhanced resilience to using only one powerful machine.
Distributed access nodes (KAs) lower the latency of VSL
accesses to information that is on close agents. Caching can
be used to enhance the performance for accessing remote
information. With caching enabled, the VSL realises a kind
of a content-centric network [4], autonomously retrieving
and enhancing access to information nodes based on their
hierarchical addresses.

When slow links partition areas of devices with fast links,
the VSL can partly cover the negative effects (e.g. latency,
bandwidth), as a KA in the fast domain acts as proxy for
the slow-link devices.

Finally, distribution makes the VSL scale.
The P2P overlay is agnostic to underlying communication

protocols. In the current implementation, three transports
are provided, and more transports can be easily added. The
first transport is OSGI remote service invocation [5]. It is
used by services on a local machine to access their KA that
runs as registered OSGI service. Services running as OSGI
bundles discover the agent and use the OSGI framework for
fast communication on the local machine. When OSGI is
not available, the knowledge agent can run as plain Java
program. The second transport is TCP. It can be used by
local services, remote services, and remote agents. The third
transport is XMPP. It is primarily used as communication
protocol between agents.

Interagent communication is always encrypted, as the data
of the VSL has to be protected. Requests for information
nodes are always authenticated. As agents send requests on
behalf of services, joining the overlay is a security-critical
operation. A malicious knowledge agent may, at a minimum,
eavesdrop on the traffic of its directly connected services and
act on behalf of them.

For discovering other knowledge agents, IP multicast
in IPv6 subnets and IP broadcast in IPv4 networks are



used. When another agent is found, the agents authenticate
mutually using signed certificates containing each agent’s
public key.

Each site has a local certificate authority (CA). In an initial
branding process it creates a unique public/private key pair
for each agent and issues a certificate with the agent’s public
key. Each agent holds its private key, its signed certificate,
and the public key of the site’s CA to verify certificates of
other agents. The initial branding helps assure the integrity
of the VSL, as only authenticated agents can join the overlay.

To authenticate, a KA sends its certificate and the remote
agent verifies it. The verified public key of the new agent is
used to establish a session key and to exchange the current
shared encryption key of the overlay. The session key is
unique for the new agent. It is used in the periodic rekeying
message to encrypt the new shared overlay communication
key. Using the indirection over a KA’s session key allows the
exclusion of a KA from the overlay, as it can only decrypt
the new shared key when it is encrypted with its session
key. After a successful join, agents communicate using the
overlay’s shared communication key.

For bootstrapping, the agent that is already part of the
overlay sends the mappings between agentIDs and transport
addresses to the new agent. The KA will use this information
to retrieve information from remote nodes on request of a
connected service. Additionally, it sends the address space of
the whole VSL containing all types (see Knowledge Register
in Fig. 2). This Knowledge Register is duplicated on all
Knowledge Agents, as it serves as entry point to the VSL.
Having a local directory allows fast search on types within
the VSL.

The VSL is updated periodically via broadcast within the
overlay. When the structure stored on an agent changes,
it broadcasts the updates in a periodic update message. If
a foreign agent misses an update, it will note this on the
next update it receives based on a mismatch of the expected
hash. It queries the agent where the Knowledge Register
hash mismatches for an explicit update then. Using the
broadcast mechanism minimises the network traffic from n2

(bidirectional exchange between all agents) towards n. In
practise, the quantity of messages is even lower, as not all
agents have structure updates every round.

In the current implementation, each Knowledge Agent
stores the information of services directly connected to it. As
each information node is available only once, the VSL stays
consistent. The node information is stored in the Knowledge
Store (see Fig. 2).

B. Interface to Services

The operation of the VSL is transparent for service
programmers. The interface to the VSL offers the methods
search, get/set, lock/unlock, subscribe/unsubscribe, addSub-
tree/removeSubtree, and registerClient/unregisterClient.

In the current implementation, the search command allows
searching for nodes of a given type. It is used to discover
devices of a certain type, such as “/light/lamp”, for instance.
With the hierarchical addressing and multi-type nodes, the
type is used to identify classes of devices (see III-C1).
A device of type “/light/lamp” may contain a subnode
“isOn” for instance. In this way, abstract devices are realised.
Knowing that the state of each lamp can be queried using the
address that is returned by the search and adding “/isOn” in
DS2OS enables developers to write orchestration services
that are independent of concrete devices. This overcomes
a fundamental problem in smart space orchestration today:
services can usually run on only one site, as they are built
for a specific device context.

A search returns a list of VSL addresses that have the
searched type and are accessible by the ID running the
search. Addresses of non-accessible information nodes are
not returned, as they cannot be accessed and as the structure
of the space should not be revealed.

The get method is called with an address and a readerID.
Services do not have to care about where information is
stored. The KA retrieves it transparently. The set method
sets the value of a node if the given ID has write permission.

The lock method locks the subtree originating at the given
address if the lockerID write or read permission. After a
specified time, the locker is notified that the lock will expire
and can renew it or the lock will be unlocked.

Subscribe and unsubscribe work as described in II and
require read rights on a node.

AddSubtree and removeSubtree are used to insert and
remove new information nodes into the VSL. They require
write permission on the parent node of the new subtree.
AddSubtree is usually called using models of the Model
Repository (see III-C1).

RegisterClient and unregisterClient are used to connect
services to the VSL. When a service is authenticated a
service node is created in the VSL if it is not present already.
The service can store its state under this node.

C. Other Services of DS2OS

The VSL is the core of the Distributed Smart Space
Orchestration System. It is designed to provide the extended
tuple space. DS2OS contains additional functionality on top
of the VSL to facilitate the development of applications.

Some additional concepts will be briefly introduced, as
they make the use and the design of the VSL more clear. In
particular, the Smart Gateways are relevant, as they reflect
the part of the real world that can be measured by sensors
and changed by actuators on the VSL and vice-versa.

1) Model Repository: The Model Repository is a global
directory of definitions of complex objects in the VSL.

VSL nodes are hierarchically ordered in a tree ad-
dress space (see II). This allows creating complex data
types with multiple fields (subnodes). VSL nodes can



have multiple types. This allows inheritance. A type
“/lights/dimmableLamp” can be derived from a type
“/lights/lamp”, for instance. Derived types have both their
own type and their parent type. This enables services for
controlling lamps to discover and control dimmable lamps
when searching for “/lights/lamp”.

Complex and derived types can be stored as templates
(Models) in the so-called Model Repository. Models can
contain not only structures, but also values (e.g. device-
specific default values). Models are the abstraction of com-
plex entities such as devices or services in the VSL. Services
instantiate Models at runtime, leading to the creation of a
new subtree inside the local VSL.

The Model Repository is global. This makes Models
consistent in all spaces. Services are usually programmed
against Models. Models are the base for portable services
that can run site-comprehensively using the VSL Models
as the interface to a smart space instance. As the Model
Repository is global, service developers can look up the
Models they want to use and write code conforming to them.

2) Runtime Environment: DS2OS contains a Runtime
Environment (RTE) that manages services locally on a node.
The RTE uses OSGI [5] to install, start, pause, and stop ser-
vices on a node. It monitors services and sends information
about the load on a device to the Service Manager.

3) Service Manager: In a DS2OS space, there is usually
one Service Manager (SM) instance running. It places and
migrates services autonomously. To do so, the SM collects
resource information from the distributed RTEs.

The distribution of the VSL on all hosts and its strict
decoupling of entities makes migration and replication of
services possible in an easy way. The indirection over the
types allows moving content to different addresses (for
example, when the hostID changes as a node fails).

4) Services: The VSL and the Model Repository facilitate
the creation of services. There are different kinds of services.

User Interface services offer interaction with users. They
benefit from the type system, as they can provide generic
inputs based on the basic data types of the Model Repository.

Control services orchestrate a space. With the support of
the VSL, it becomes possible to realise complex workflows
with simple logic (see I).

Reasoning Services take information out of the VSL,
reason on it, and put new information back into the VSL.
Reasoning Services are often used as external modules for
services – especially Smart Gateway services. The use of
the VSL as the only coupling mechanism makes it easy to
couple any kind of information in a space, as it is accessed
and represented in the same way.

Smart Gateway services couple sensors and actuators with
the VSL. They reflect the part of the physical world that is
interfaced by sensors and actuators to the VSL and vice-
versa autonomously. A gateway is an ordinary service with
the exception that some gateway services may need special

physical interfaces (e.g. to LON or EIB). Smart gateways try
to extract the physical reality out of the protocol messages
exchanged with the devices. If they manage to do so, no
loss is introduced via the VSL, as no additional limit is
introduced to the existing interface to the real world.

In the Models, the autonomy of a Smart Gateway is
reflected by distinguishing between desired and running
states. The reflection of the desired state to reality and from
there to the running state happens in the Smart Gateway. In
order to be notified of value changes in the structure, the
Smart Gateway uses a VSL subscription on the root of the
desired subtree.

Smart Gateways are based on the Monitor-Analyse-Plan-
Execute (MAPE, see Fig. 2) structuring for autonomy [6].
They can be configured according to the needs of the con-
nected devices (see also [7]). The Plan module subscribes
to the desired subtree. In case of a change (notification
received), it tries to reflect the change to the physical world
using the Execute module. On the way back, the Protocol
Adapter sends information to the Monitor module. The
Analyser processes the information and adds it to the VSL.

The presented version of the MAPE scheme fits for
command line, webservice, REST, BACnet, and EIB. Using
existing frameworks and libraries for the protocol adapter
makes it easy to create a protocol adapter.

5) Application Store: The Service Manager (see III-C3)
takes binaries of services and deploys them to local hosts. It
is only a small step to connect the local Service Manager to
the Application Store. The decoupling over the VSL makes
site-comprehensive services possible.

IV. RELATED WORK

There are many middleware approaches for smart spaces.
Common to all approaches is the challenge of high-level
instructions by humans on the one hand and concrete values
on sensors and actuators on the other hand (see I).

The scientific community has developed ontologies as
formalisms to map concrete events to increasingly abstract
concepts [8], [9], [7]. The concept makes it easy to apply
orchestration rules on abstract knowledge. The drawback
of the ontological approach is that it is very complex to
create ontologies and to apply them in a way that makes the
mapping to and from concrete and abstract domains clear.
Complex ontology-based approaches are seldom found in
smart space environments outside research labs [10]

The opposite approach could be called “the babelfish ap-
proach”. Communication messages of heterogeneous devices
are translated at runtime (e.g. in order to match the format
of the destination system). This allows synchronous commu-
nication without adding heavy abstraction. The translation
happens autonomously, with gateways translating syntax and
semantics [11], [12]. The approach of providing access to
all services in a space without adding much abstraction is
often found in customer installations [10].



The proposed VSL approach lies in the middle of both.
It provides exactly the level of semantic abstraction that is
needed for orchestration to work (see III-C4 Smart Gate-
ways). The bidirectional mapping between the output of a
device and its representation in the VSL remains.

The VSL is a good base for services reasoning with
ontologies. They can use the VSL as interface to the world
and provide their reasoning results to other services over it.
At the same time, protocol translating gateways can be used
very well as input or replacement of the Smart Gateways.

Microsoft started working on an operating system for the
home in 2010 [13]. Their system follows the same goals
our system does; however, the realisation is very different
in that their system is centralised, while our system is
decentralised. Microsoft’s HomeOS is based on the idea of
making remote devices appear as local to the machine the
system is running. The abstraction of devices is function-
based and synchronous. The VSL instead offers full spatial
and temporal decoupling.

Microsoft’s approach seems to be a good one for creating
a business case for a company. The presented VSL and
DS2OS approach will hopefully provide a good base for
crowd-sourced development as it happens in the open source
community.

V. CONCLUSION

The Virtual State Layer as a basic abstraction for orches-
trating smart spaces was introduced. It extends the tuple
space concept with hierarchical addresses, permanently-
stored and versioned access-controlled tuples, and virtual
nodes.

The representation of real world properties as state in the
VSL is fit as sensor hardware samples the world and commu-
nicates the samples. Communication protocols as a means
to communicate with sensors and actuators usually contain
data that can be stored as VSL tuples. Therefore, inserting
the VSL between orchestration software and hardware (see
Fig. 1) does not usually limit the orchestration process.

Combined with the Smart Gateways (see III-C4), the VSL
virtualizes the orchestratable part of a real space. Having
to interact only with the VSL in order to orchestrate a
space facilitates services significantly. As the VSL stores and
brokers state tuples offered by any service, programmers do
not have to worry about information storage and retrieval
functionality. They can also use the VSL as a coupling
mechanism between service to realise SOAs. The avail-
ability of the VSL allows mapping complex orchestration
workflows to simple-to-implement concepts such as ECA
rules (see III-C4). The combination of the VSL and the
Model Repository (see III-C1) enables the creation of site-
independent service.

Providing this base, we hope to see similar effects to
what we observed in the app economy: crowd-sourced
development of Smart Gateways (as special services) and

orchestration software. With its vendor-comprehensive ab-
straction, the VSL could open up a sizeable playground and
market for smart space orchestration.

REFERENCES

[1] W. Prinz, “Perception and Action Planning,” European Jour-
nal of Cognitive Psychology, vol. 9, no. 2, pp. 129–154, 1997.

[2] D. Gelernter, “Generative communication in Linda,” ACM
Transactions on Programming Languages and Systems, 1985.

[3] P. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec,
“The Many Faces of Publish/Subscribe,” ACM Computing
Surveys, Vol. 35, No. 2, June 2003, pp. 114–131., vol. 35,
no. June 2003, pp. 114–131, 2003.

[4] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass,
N. H. Briggs, and R. L. Braynard, “Networking named
content,” in the 5th international conference. New York,
New York, USA: ACM Press, 2009, p. 1.

[5] The OSGi Alliance, OSGi Service Platform Core Specifica-
tion, ser. Release 4, Version 4.3. The OSGi Alliance.

[6] J. O. Kephart and D. M. C. Chess, “The vision of autonomic
computing,” Computer, vol. 36, no. 1, 2003.

[7] N. Lasierra, A. Alesanco, J. Garcia, and D. O’Sullivan, “Data
management in home scenarios using an autonomic ontology-
based approach,” in 2012 IEEE International Conference
on Pervasive Computing and Communications Workshops
(PerCom Workshops). IEEE, 2012, pp. 94–99.

[8] C. Bolchini, C. A. Curino, E. Quintarelli, and F. A. Schreiber,
“A data-oriented survey of context models,” ACM SIGMOD,
2007.

[9] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nick-
las, A. Ranganathan, and D. Riboni, “A survey of context
modelling and reasoning techniques,” Pervasive and Mobile
Computing, vol. 6, no. 2, pp. 161–180, Apr. 2010.

[10] A. Brush, B. Lee, R. Mahajan, S. Agarwal, S. Saroiu, and
C. Dixon, “Home automation in the wild: challenges and
opportunities,” in Proceedings of the 2011 annual conference
on Human factors in computing systems. ACM, 2011, pp.
2115–2124.

[11] Y.-D. Bromberg, P. Grace, L. Reveillere, and G. S. Blair,
“Bridging the interoperability gap: overcoming combined ap-
plication and middleware heterogeneity,” in Middleware’11:
Proceedings of the 12th ACM/IFIP/USENIX international
conference on Middleware. Springer-Verlag, Dec. 2011.

[12] G. S. Blair, A. Bennaceur, N. Georgantas, P. Grace, V. Issarny,
V. Nundloll, and M. Paolucci, “The role of ontologies in
emergent middleware: supporting interoperability in complex
distributed systems,” in Middleware’11: Proceedings of the
12th ACM/IFIP/USENIX international conference on Middle-
ware. Springer-Verlag, Dec. 2011.

[13] C. Dixon, R. Mahajan, S. Agarwal, A. J. Brush, B. Lee,
S. Saroiu, and P. Bahl, “An operating system for the home,”
in NSDI’12: Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation. USENIX
Association, Apr. 2012.


