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Abstract—Managing smart spaces with software requires the
acquisition and processing of context information about a space.
To be usable for exchanging information, a context representation
has to be structured with a context model. Existing context-
modeling techniques usually require experts and lack support for
collaborative distributed creation, which prevents a crowdsourced
development in a distributed collaborative way by non-experts.
To facilitate context modeling, this paper presents a hybrid meta
model that combines features from key-value, markup, object
oriented, and ontology based context-modeling approaches. An
architecture is introduced that allows the dynamic collaborative
extension and crowdsourced convergence of context models.

I. INTRODUCTION

The term Internet of Things (IoT) describes the technical
realization of ubiquitous computing [1] from a device-centric
point of view. A physical environment that is enriched with
smart devices is called smart space in this paper. Smart devices
are embedded systems that are remotely controllable over
a network interface and that contain sensors and actuators
to interface their physical environment. Smart devices can
have diverse purposes, as ubiquitous computing has diverse
applications.

The execution of services that implement pervasive com-
puting scenarios is called Smart Space Orchestration. The term
context describes all information that is relevant for a service
to fulfill its orchestration goal. Context is represented as so-
called virtual objects. A context model defines the structure of
a virtual object. A meta model defines the language that can
be used to create context models.

Ubiquitous computing is still not reality in 2014 [2]. While
its mobile computing part [3] is very successful [4], [5],
the pervasive computing part still struggles [6], [2], [7], [8].
That the success of mobile computing came earlier is not
surprising as its technology to connect devices, and to offer
remote (cloud-) resources to smart devices for realizing com-
plex orchestration tasks [9] is needed for realizing pervasive
computing [10].

Many smart devices are available off-the-shelf in 2014.
Often they are heterogeneous in the offered communication
protocols [11], [2], [6], [12]. Available smart devices are
developed for different domains, by different vendors, and have
different targeted installation environments. A smart device
that has the function of a fire alarm will probably expose
the state of its sensors in a different way than a device with
the same sensors in another functional domain. A battery
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powered smart device with a radio interface is likely to use a
different communication protocol than a smart device that has
a powerline based energy supply and communication interface.

Pervasive computing scenarios typically bridge multiple
formerly separate application domains such as office automa-
tion and building control. To do so, software is needed. The
orchestration of diverse entities via software is called software
orchestration. Software orchestration is complex in 2014 as
interfacing distributed heterogeneous devices introduces com-
plexity.

Middleware can help to overcome distribution complexity
[13]. Context-provisioning middleware provides functionality
to manage context. As pervasive computing is inherently
context-aware, context-provisioning middleware facilitates the
creation of Smart Space Orchestration services [8].

Context-provisioning middleware allows implementing ser-
vices that use context as interface for communication. Services
act as context producer and context consumer and interact
over their exchanged confext. A system that allows service
interaction over context was presented in [14]. It is a context-
provisioning middleware with the name Virtual State Layer
(VSL, Sec. IV). The VSL is used as base for this work though
any context-provisioning middleware that supports context
models could be used.

When using context for information exchange between
services, a fundamental problem is the standardization of
context models. If each entity such as different lamps has a
different context model, portability cannot be realized. The
term portability is used to describe the independence of a
service implementation from specific device interfaces. Intro-
ducing abstract interfaces typically provides it. In case each
device brings its own abstract interface, heterogeneity of the
device layer is only lifted on a higher level of abstraction.
Therefore standardization of abstract interfaces is needed.

It is desired that abstract interfaces for a certain type
of functionality, e.g. lamp, are standardized. As described in
Sec. IV, the VSL uses context as abstract interface to services.
The standardization of abstract service interfaces is therefore
identical to the standardization of context models.

A problem with established standardization processes is
that they take time, and they do not scale with the diversity of
pervasive computing scenarios and devices [15]. Therefore this
work proposes a novel mechanism for collaborative user-based,
crowdsourced standardization of context models. It consists of:

e a simple-to-use dynamically-extensible meta model



that is based on hierarchically structured typed tuples,
multi-inheritance, and composition (Sec. V-A)

e a crowdsourced context model creation and conver-
gence mechanism (Sec. VI).

After the related work (Sec. II) requirements on context-
modeling for future smart spaces are analyzed. Then the VSL
is briefly introduced for understanding the practical usability
of the proposed approach (Sec. IV). Next, the dynamically
extensible context modeling approach is motivated with state
of the art context-modeling techniques and presented in Sec. V.
The VSL context model is the basis for the proposed crowd-
sourced context modeling, and convergence that are introduced
in Sec. VI. Finally the concept is evaluated with a user study
in Sec. VI-C.

II. RELATED WORK

Defining context models for managed elements is a well
known task from network management [16], [17]. A typical
way to find common context models (e.g. [16]) for network el-
ements is standardization or de-facto standardization by major
vendors introducing their context models and other vendors
adapting them. A fundamental difference between network
elements and smart devices is that the diversity in functionality
and vendors is much higher for smart devices. This makes
applying the mechanisms used for standardizing models for
network elements for standardizing context models of smart
devices difficult.

The proposal of this paper is a collaborative creation and
sharing of a Smart Space context models over a Context
Model Repository (CMR). Using a central CMR automatically
realizes an ontology for Smart Spaces as it contains the context
models that are used to describe the entities of smart spaces
(Sec. V-A). The closest related work is about collaborative
editing and convergence of ontologies which fulfills the col-
laboration aspect but requires experts and does not support
dynamic extensibility (see Sec. V).

In [18], the authors present different concepts to create
context models, including a collaborative one. This collabora-
tive approach requires manual arbitration, leading to scalability
problems. The presented collaboration methods could well be
used as supportive information for context model builders in
our approach.

In [19], the authors propose consensus-building mecha-
nisms for collaborative ontology building. Their approach is
based on offline discussions and does therefore neither scale
nor work efficiently with worldwide distributed participants.
The presented supporting methodologies for finding a consen-
sus is nevertheless interesting as guidelines for the manual
model rating in our rating approach (Sec. VI-B).

The authors of [20] present a an entirely online-based
process for ontology building and convergence that is imple-
mented on an extended wiki. Like the previous approaches,
the creation of an ontology needs technical experts, and the
convergence process is human-based.

III. REQUIREMENTS

Smartphones are a driving force behind the success of
mobile computing [4], [5]. The App Store with its App distri-

bution mechanism allows deploying software to smartphones
[21]. This realizes software orchestration in the smartphone
environment as the use of a smartphone can be changed by
software without changing the hardware [22]. The introduction
of an App Store enabled distributed user-based, crowdsourced,
development of software. Such a development is also desired
for software orchestrated smart spaces [2].

A key difference between smartphones and smart spaces is
that smartphones have a limited and well defined set of sensors
and actuators that is supported by the operating system. The
limited amount allows to fix the Application Programming
Interfaces (API) for smartphone peripherals. They can be
supported by the operating system (OS) [23], [24].

The approach of implementing smart device adaptation
functionality in each orchestration service does not scale with
the diversity of pervasive computing scenarios and the diversity
of smart devices [2], [25]. There is consensus [14], [26], [27]
that the adaptation functionality between proprietary device
protocols and standard interface must be implemented in
specific software adaptation services, and should not be part of
the smart space operating system kernel [28]. Different groups
are currently working on solutions for an operating system
for smart spaces that allows to interface heterogeneous smart
devices via standardized interfaces [14], [26], [27].

A problem that emerges now is that different abstract
interfaces for different smart devices with similar function-
ality prevent portability [27]. The VSL context-provisioning
middleware that is used as base for this work uses context
models as abstract interfaces between services. The diversity
of smart devices requires a large amount of context models to
be created for the VSL.

The proposal of this paper is to establish a process for
distributed collaborative, crowdsourced development of context
models. This leads to the requirements:

(1) A context model for smart space orchestration must be
simple enough to create for non-experts;

(2) Methods for crowdsourced development of context models
are required.

With crowdsourced context model creation the problem
arises that different developers may create concurring models
for the same smart device functionality. This is not desired as
supporting diverse interfaces makes orchestration services that
realize pervasive computing scenarios complex.

Existing standardization approaches are likely not to be
sufficient (see Sec. II) for the huge amount of devices that
need interfaces to be usable in future smart space orchestration
workflows. Additionally the typical duration of standardization
processes could be a decisive drawback for the emergence of
smart spaces in the real world as it delays the creation of
smart space services which in turn prevents customers from
experiencing smart spaces and investing in the technology
[29], [30].

To implement portability an equivalent to standardization
is needed:
(3) Methods for converging context models are needed that
scale with the required amount of context models for Smart
Space Orchestration.



IV. THE VIRTUAL STATE LAYER (VSL)
CONTEXT-PROVISIONING MIDDLEWARE

To implement pervasive computing work flows, services
have to acquire context about the past, current, or future
state of the environment they orchestrate. Context acquisition
contains multiple sub tasks including contacting smart devices,
retrieving information, interpreting device-specific results, and
possibly storing them for later reuse as past context [8], [27].

Without additional support, context acquisition is a com-
plex task for service developers. Middleware facilitates the
access to distributed systems by making communication and
coordination transparent for developers [13]. Context-aware
middleware additionally provides context management func-
tionality including context storage, discovery, and distribution
[8]. To support developers, the context-aware middleware
Virtual State Layer (VSL) is used as base for this work [14].

The VSL enables software orchestrated smart spaces. The
VSL has a fixed set of API functions. They allow manipulating
context in different ways such as subscribing for change
notifications [14]. All VSL services use the same interface to
access each other’s context. The accessed context represents
the interaction points of a service (see Sec. V-A).

To enable portability, VSL context is structured by instanti-
ating VSL context models that are available in a central CMR.
This allows service developers to look for possibly available
context (e.g. an instance of the context model 1lamp), and
search for it in a VSL instance.

As the API of the VSL is the interface for inter-service
communication, all services are inherently API compatible
fostering modular design, and reuse, resulting in a novel kind
of context-based Service Oriented Architecture (SoA) [31].

Smart devices are managed using so-called adaptation ser-
vices. They implement bidirectional adaptation between smart
devices and their context model instances in the VSL [32].
So-called orchestration services realize pervasive computing
scenarios by interfacing smart devices via their context models
in the VSL. The VSL context is the virtual representation of
the part of the physical world that can be orchestrated via
software (see Sec. V-D).

The VSL is designed to facilitate and structure the creation
of smart space services. It targets crowdsourced development
of services for smart spaces [14] similar to how it happens
the open source community [33] or the App economy [34] in
2014.

As described, the VSL context models (see Sec. V-A) are
the abstract interfaces of services and as such an integral part of
the service development process with the VSL support. Their
creation and their convergence are the topics of this paper.

V. EXISTING META MODELS

Existing meta models for context modeling are assessed
according to the following desired properties. Simplicity-to-
use 1is important to enable non experts to create context
models as described in Sec. IV. Expressiveness is important as
context models define the information that can be represented
in a VSL smart space. It is characterized by the semantic
concepts a meta model supports such as dependencies between

context models. Fast processing is important as future software
orchestrated smart spaces are likely to contain a big amount
of context.

Dynamic extensibility with new context models is required
to integrate new smart devices at run-time. Support for col-
laboration is needed for realizing portability by sharing and
collaboratively creating context models. Context models should
support validation to enhance the dependability and the secu-
rity of a software orchestrated smart space.

Different candidate concepts for representing the context of
smart spaces are shown in table I. Following the shortcomings
of the assessed approaches are discussed [35], [8]. Then the
VSL context model is introduced. It realizes a hybrid of the
analyzed concepts.
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TABLE 1. COMPARISON OF DIFFERENT CONTEXT MODELS.

Key-Value Pairs are very simple-to-use (++) which suits
the goal to enable crowdsourced context modeling well but
they lack expressiveness, as they are unstructured (--). Key-
value model instances are self-contained. Their values can be
read without resolving dependencies to other key-value pairs,
allowing fast processing (++).

Key-value pairs do not have a formal structure that can be
shared over a CMR. They realize an implicit, non extensible (-
-) context model. Collaborative editing is not supported (--). As
key-value tuples do not follow predefined structures, validating
them with generic algorithms is typically not possible [8] (--).

Markup Scheme-based context models provide a hierarchi-
cal structure that is expressed with markup tags such as XML.
They are simple-to-use (++). Per se they are not expressive
(-). Markup models are typically self-contained, allowing fast
processing (++).

If a mechanism to distribute markup context models is
established they can be updated dynamically ( ). The simple
structure and the self-containment allow collaborative editing
but a markup scheme per se does not support sharing (-). The
markup language typically allows syntactic and partly semantic
(e.g. boundaries) automatic validation (+) [8], [35].

Object Oriented context models are simple-to-use (++).
Inheritance can easily be understood by humans [36]. The
expressiveness is higher than in the former models as the
inheritance represents dependency relationships (+). Object
oriented context models can include dependencies that have
to be resolved for access, making them slower to process (+).

Extending existing object oriented context models (--), and
creating new ones collaboratively are difficult (-) as objects



typically “live” in a single environment and cannot easily be
accessed remotely. Relationships and inherited properties can
typically be validated [8].

Ontology Based context models are designed to model the
reality. The use of concepts that are close to human reality sim-
plifies their use. Though the conceptual creation of ontologies
is simple creating ontology context models typically requires
domain and ontology experts, as the used representations are
complicated (+) [20].

Ontologies typically express several relationships between
entities in their context models. While this brings more expres-
siveness (++) it makes processing them more complex as more
dependencies have to be resolved to access context (—).

As described in the related work section (Sec. II), the
collaborative creation of ontologies is an open research topic.
Typically ontologies are defined before use and are not dy-
namically extended (-) or collaboratively created (-) [20], [8],
[35]. With their high expressiveness and the use of markup
for representation, ontologies enable syntactic and semantic
validation of aspects of their context models (++).

A. The VSL Meta Model

Based on the evaluation in Sec. V, the VSL uses a hybrid
meta model consisting of hierarchically structured ryped key-
value pairs (tuples) with additional management metadata:
(address, value, type, versionin fo, accessrights).

The tuples are logically structured by using hierarchical
addresses. The resulting logical hierarchy forms a tree of tuples
as shown in Fig. 2. Nodes of the context tree are addressed in
a similar way to files in a filesystem tree: parent/child/child.
The hierarchic structure allows to express containment, e.g.
/car/wheels/leftFrontWheel.

O-0-0-0———

Knowledge Agent oy
8
servicel | 4.-* &
o
. )
Node Attributes: Global E
Type : model
AccessIDs .
VersionNr ﬁ» Local
Timestamp Iamp23) instance

- service2

>
Y
i)
[¢}
2
c
o
]
9]
~
a
<
7}

Fig. 1.  Instantiation of a VSL Model from the global Central Model
Repository (CMR) when a service instance is started on a node in a local
VSL site.

VSL context models are represented in XML markup
as shown in the listing in Sec. VI-C. This enables syntax
validation.

To share context models, a global Central Model Reposi-
tory (CMR) is introduced. It stores the XML representations
of VSL context models. When a service is started in a local
VSL smart space, the VSL context model that is associated

with the service is loaded from the CMR and instantiated in
the local VSL. See Fig. 1.

The correspondence between a service and its Model is
expressed by the model identifier (modelID) that is part of
the metadata of each service (see (0) in Fig. 2). Only context
that has a context model in the CMR can be instantiated. As a
result, a VSL sites always contains a subset of the Models that
are defined in the CMR. A VSL context model instance can
have any name as illustrated with the name “fooBar” for the
instance of the “service2” context model on the left in Fig. 2.

Context models in the CMR are identified by their name
called modellD. As described above, each VSL context node
has a type. With the CMR, the VSL implements a dynamically
extensible type system. Each context model in the CMR is
a VSL type that can be used for composition and subtyping
when creating new context models. The CMR only stores and
provides valid models. The validity is checked on uploading
new models.

The VSL knows three basic data types with restrictions. A
number represents a number and has a lower and upper bound
for the value as restriction. A fext represents a text with a
restricting regular expression. A [list represents a list of VSL
context nodes. It is restricted by allowed types for entries, and
a minimum and a maximum amount of entries.

Subtyping extends an existing type. An example is defin-
ing a boolean as <boolean type="/basic/number"
lowerBound="0" upperBound="1" />. When creat-
ing a subtype of an existing type the restrictions can only
be narrowed. This can automatically be validated. See (2) in
Fig. 2.

By creating new context models which contain nodes that
instantiate other types, identified by their modellID, implements
composition. The listing in Sec. VI-C shows an example. The
printed VSL context model is composed of different nodes that
are of different other types that are in turn defined by context
models in the CMR. See (1) in Fig. 2.

The types that are defined in the CMR have two roles in
the VSL:
(1) typing: they identify the included basic data type, e.g.
/ilab/led.
(2) naming: they provide semantic names, e.g. ledGreen,

Identifier (2) in Fig. 2 shows the typing process: the
type “number” is inherited to “byte”. Typing is known from
programming languages.

An example for naming is shown in Fig. 2 at the composi-
tion of the servicel model with the temperature type in
the CMR. The name given to the node is tempOut as shown
in the context model instance on the left in Fig. 2. Naming
adds semantics to the node. As the original types remain in
the type field (multi inheriance), the data type is preserved.

The basic data types can be derived using the inheritance
mechanism combined with narrowing the restrictions, or ex-
tending the inherited type with additional nodes. Narrowing
restrictions is shown at the example of the derived type “byte”
that inherits from the basic type “number” and restricts its
range to [0..255] in Fig. 2 (see 2). Adding additional subnodes



is illustrated at the example of the derived type “temperature”.
It contains a number that is extended with one additional
context node. This additional node must again be derived from
a basic data type such as “text” for carrying a temperature unit
identifier for instance!. As shown in Fig. 2, derived data types
always contain all inherited type identifiers (modellDs). This
allows services to interface all subtypes independently (subtype
polymorphism).

The basic data types can be composed, creating hierarchical
structures of named nodes. All nodes carrying data have a basic
data type as root (rightmost entry) of their derivation chain.

The VSL features multi-inheritance. This means that
a context node can inherit from multiple existing types/
context models. This is attractive as the context mod-
els are used as abstract service interfaces in the VSL.
A lamp that is dimmable could have a VSL confext
model, <dimmableLamp type="lamp, speciallLamp"
/>. This realizes subtype polymorphism. An instance of the
context model can be accessed as dimmableLamp, lamp,
and specialLamp.

The multi-inheritance in combination with the rooting of
all data nodes in few basic data types allows basic semantic
validation (see Sec. V-C). At the same time, it allows services
to access the same context data on different semantic levels.
Different semantic levels mean that services that do not have
knowledge about derived data types such as “temperature” in
their code can still access the “number” semantics.

The described information model can be represented using
different data models. XML is used as data model since a
markup scheme is a simple-to-understand context-modeling
approach (Sec. V). The following listing shows the XML
definition of the inherited and restricted byte as shown in
Fig. 2 which is extended with a “/derived/boolean” node that
is initialized as L. Values are overwritten in the order they
are included. The Model is stored as file “/derived/byteWith-
Boolean.xml” in the Model Repository as listed:

/derived/byteWithBoolean.xml
<byteWithBoolean type="/basic/number"
lowerBound="0"
upperBound="255">

<isOn type="/derived/boolean">FALSE</isOn>

</byteWithBoolean>

The introduction of the CMR results in a central storage
for all context models. The VSL context models define which
context can be represented in a VSL space. The context models
in the CMR can be dynamically extended. Therefore the VSL
CMR is a dynamically-extensible, crowdsourced context model
repository for smart spaces. At the same time it defines all data
types that can be used in the VSL.

B. Organization of Model names

Each VSL Model has a unique name that cannot be
reused (see Sec. VI-B). The name follows a hierarchical

UIn the real temperature VSL Model the unit is selected from an “enumer-
ation” that is a composition of a list containing the possible selections, and a
number for the index of the currently selected value.

naming scheme, creating namespaces such as “/home/kitchen/-
cookerl”. Version number suffixes can be used to update
existing Models, e.g. “/home/kitchen/cooker2”. Such an update
would typically extend some fields and derive from “/home/k-
itchen/cooker1” to remain backwards compatible with services
interfacing “/home/kitchen/cooker1” as described in Sec. V-A.

C. Validation

The VSL meta model enables the validation of all context
data nodes based on their restrictions.

The VSL implements so-called validators that check if a
value matches the restrictions of a context node such as that a
“number” value is a natural number and within the given range.
Context nodes that can have values must be derived from one
of the basic data types (Sec. V-A). This rooting enables the use
of the basic data type validators to validate all VSL context
nodes. This applies to values in context model instances in a
VSL site, and to values in context models that are submitted
to the CMR.

The CMR automatically checks if newly submitted context
models are well defined. Well defined means here that all types
used are defined in the CMR already, and that restrictions are
only narrowed when deriving a data type. If a context model
is not well defined it is rejected with an error.

The automatic validation ensures the integrity of all context
models in the CMR. The validation of values in a VSL instance
ensures basic validity of context that is represented in the
VSL. Automated validation helps to enhance the dependability
and the security of software orchestrated smart spaces. An
accidental or intended violation of the specified structures of
the context model is prevented.

D. Additional Semantic Providers

The primary context used by the VSL to identify context
models is the VSL type. It represents containment relations
between nodes on a fundamental (multi-inheritance, basic
data types) and a higher semantic (hierarchical composition,
inheritance) level.

The aim of an ontology is to model not only containment
but diverse relationships of smart space entities that can “fa-
cilitate the creation of a common and shared understanding”
[19]. The presented VSL context model can simply be extended
to express more semantic relations. The reason for the extensi-
bility is the underlying concept of only representing properties
with the context model. So far the properties were mainly
related to state that is created by services. But properties
can also be used to express additional secondary contexts as
described in the following example.

Location relationships are relevant in smart spaces. The
spatial dimensions of rooms play an important role for building
systems such as heating or lighting for instance. All service
Models inherit from the Model ‘“/system/service”. To add
location information to all services —which includes adding lo-
cation information to all smart devices as they are connected to
the VSL via services—, their basis Model can be extended with
a location subtree. This subtree contains 3D geo-coordinates
that give each service a unique location in the world.



To make the additional information semantically usable
for services, the VSL is extended with an additional search
provider for location. This service periodically caches all
location information from the service contexts in the VSL
for fast search. Additionally it allows storing spatial ob-
jects such as rooms. The described extension enables ser-
vices to query for location; e.g. “get /search/location/[living
room]/[temperature]” returns the instance addresses of all
nodes of type “temperature” that are within the area identified
by “living room”.

Similarly diverse relationships can be represented. This
extends the VSL context models in the CMR to a crowdsourced
dynamically-extensible onfology for smart spaces.

E. Discussion

The VSL context model consists of key-value pairs with
hierarchical addresses for each node as keys. Therefore it is
simple-to-use (++). See table I.

The VSL context models represent subtyping and com-
position relationships. Additional semantics can be added by
extending the VSL with additional search providers. This
realizes high expressiveness (++).

As the VSL meta model consists of self-contained tuples,
it can be processed fast (++). The CMR allows to add context
models at run-time. Via the described mechanism, the VSL
instantiates new context models automatically from the CMR.
This implements dynamic extensibility (++).

As described in Sec. VI, everyone can add Models to
the CMR. The possibility to validate the markup of newly
submitted models (see Sec. V-C) makes sure that the Models
in the CMR are consistent. This results in good support for
collaborative editing (++).

As described in Sec. V-C, VSL Models can be validated.
The use of a markup scheme allows syntax validation. The
rooting of all data types with values in the basic data types
enables semantic validation (++).

All properties together foster a collaborative context model
creation by non-experts.

VI. CROWDSOURCED CONTEXT-MODELING

The VSL uses context models as abstract interfaces for
services (Sec. V-A). To provide interface portability for future
smart space services, a convergence of interfaces is desired.
Following, a convergence mechanism for context models is
introduced. Via the dual use of the context models it realizes
a convergence of abstract service (and device) interfaces.

Fig. 2 shows context-modeling related components of the
VSL architecture. On the top right, the Smart Space Store is
shown. It stores service executables that end-users can deploy
into their smart spaces using VSL mechanisms similar to
how Apps get deployed to smartphones from an App Store.
The Smart Space Store contains the CMR. In addition it
stores metadata to services such as the relationships between
services and their corresponding context models. As last
relevant item the Smart Space Store stores and provides
statistics about services and context models (Sec. VI-B).

On the left a VSL smart space is shown. The context-aware
VSL middleware acts as context store and context broker for
services (see Sec. IV).

The bottom right shows additional smart spaces that work
like the one shown on the left, and users. Both are important for
the crowdsourced convergence that is introduced in Sec. VI-B.

Users have two roles in the shown scenario. They use
services in their VSL smart space, and they can participate
in the development of services for smart spaces. The creation
of context models is a fundamental task when developing a
VSL service as it defines the interface (Sec. IV).

A. Crowdsourcing

The VSL meta model supports crowdsourced development.
It is simple-to-use, it allows a collaborative creation of context
models, and it provides automated mechanisms for validation
(Sec. V-A).

The CMR in the Smart Space Store is open to the public.
Everyone can contribute new context models in the repre-
sentation they are shown in the listings in this paper. The
CMR automatically validates new models for using a unique
name, and for being valid. The automatic validity check of the
CMR (Sec. V-A) ensures the integrity of all models that are
published.

After acceptance, all context models in the CMR can
directly be used by services as described in Sec. V-A.

B. Convergence

Allowing everyone to submit models is likely to result in
heterogeneity. As described in the introduction, portability is
needed to realize software orchestration in future smart spaces.
Portability needs standardization to limit the heterogeneity, and
to make VSL services interoperable.

Without a coordination mechanism it is likely that each
developer creates the model that fits best to her purpose. As
an example it can be expected that many different models
for a lamp emerge. This is problematic as it re-introduces
the major problem, the context-aware VSL middleware was
introduced for: providing homogeneous abstractions on top
of the heterogeneous smart devices of a space to facilitate
the service development, and to make services portable. To
converge context models it is desirable that one of the VSL
context models for a lamp turns out to be the best, and all other
lamps (e.g. dimmableLamp) derive from that lamp model.

This paper proposes a crowdsourced convergence mecha-
nism that is based on public statistics. To create the statistics,
the Smart Space Store collects different data and applies
different metrics to rate the popularity of context models.

The Smart Space Store contains all available VSL services.
Each service uses a context model as abstract interface. As
shown on the top right of Fig. 2 the store contains a list of
services, and the context models they use. This list can be
evaluated identify which context models are used by which
services. If it turns out, that a model “lamp42” is used by
most services, it seems this is a popular context model for a
lamp.
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The Smart Space Store knows the amount of downloads
per service. This can be used to refine the previous metric. A
higher amount of downloads of services using a certain model
results in higher popularity of a Model. Fig. 2 shows both
described factors as (3).

As third input, the VSL sites and the Smart Space Store
interact. A VSL smart space reports errors and usage statistics
to the Smart Space Store when the user agrees. Both are added
to the ratings of the context models.

Finally users can rate services, and developers can rate
context models based on their usefulness or their beauty (e.g.
naming, brevity). The automated feedback collection and the
user ratings are shown as (4) in Fig. 2.

All ratings and statistical evaluations are published. This
is expected to generate a feedback loop for developers as
follows. The popularity of a context model expresses its use in
available services. In case of a device driver, using a popular
Model increases the interoperability of new smart devices with
existing services. Therefore developers that want to develop
a driver service for a smart device are likely to choose a
context model that is very popular as abstract interface to their
adaptation service.

Orchestration service developers are likely to act similar.
Knowing that “lamp42” is the most popular context model
for smart devices that have lamp functionality, searching and
controlling lamps in a VSL site, using this context model is
likely to have most effect.

The existing App economy for smartphones shows that a
subset of the described mechanisms realizes App convergence
[37]. Additional incentives such as revenue —popular services
bring more revenue— can be added to the described scheme.
Based on the experiences with the App economy the described
mechanisms are likely successful in implementing a crowd-
sourced context model convergence.
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modellD | exec
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HO)

v
Statistics
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System view on the crowdsourcing architecture, including the global Smart Space Store hosting the VSL context model, different smart spaces and

C. Evaluation

A critical factor for the proposed crowdsourced creation of
context models is the usability of the meta model. Two user
studies with six and eight participants were done to assess the
usability. The participants were computer science students that
did not know the presented concepts before the study. The VSL
context model creation task was embedded in a larger exercise
about using the VSL for creating smart space services 2. Given
some example context models, all students were immediately
able to create complex context models for their previously built
Arduino-based smart devices.

The following context model was created by a student team:
/ilab/smartDevice.xml

<smartDevice>

<temperature type="/ilab/temperature">
</temperature>

<button type="/ilab/button"></button>
<ledGreen type="/ilab/led"></ledGreen>
<ledOnBoard type="/ilab/led"></ledOnBoard>
<lightSensor type="/ilab/lightSensor">
</lightSensor>

<timer0 type="/ilab/triggerTimer"></timer0>

</smartDevice>

The listing gives an impression how much the described
use of context models as types in combination with the multi-
inheritance simplify the creation of context models. It becomes
a modular task, hiding the complexity of the resulting model
from the developer. The expanded version of the above context
model is complex.

The VSL and the CMR are implemented and running®. The
Service Store that provides the statistics and allows the ratings
(see Sec. VI-B) is currently getting implemented.

Zhttp://pahl.de/download/dissertation/ds20s.lab/
3https://cmr.ds20s.org/



Though it is not sure, that the proposed convergence
mechanisms will have the desired effects, looking at statistics
from the existing App stores for smartphones leads to the
conclusion that the proposed metrics will return significant
trends.

VII. CONCLUSION

The VSL middleware (Sec. IV) structures and facilitates the
creation of software services that implement pervasive comput-
ing scenarios [29]. The use of context models as descriptive,
simple-to-use interfaces for services pushes the complexity of
smart space orchestration in the background. Simplification is
required for pervasive computing to become reality [2], [1].

This paper identified advantages and limitations of different
existing context modeling approaches (Sec. V). The simple-to-
use dynamically-extensible VSL meta model was introduced.
It modularizes the context model creation. This lowers the
complexity significantly as shown in the example in the
evaluation. The use of the CMR fosters the reuse of con-
text models. Via the described multi-inheritance mechanism,
subtype polymorphism is realized. Both foster the necessary
portability of services.

To channel the diversity of management interfaces stan-
dardization is needed. It was discussed that existing stan-
dardization mechanisms for interfaces ar not suitable for the
diversity of smart spaces. Consequently an architecture for
crowdsourced context modeling was introduced (Sec. VI).

The App economy shows that user developed content is a
good way to identify user demand. The principle of enabling
(skilled) users to develop software that follows their interests
instead of letting (few) companies decide for end-users which
functionality they should want [30] is promising. Therefore
the VSL is designed to enable end-users to support the smart
devices they want and to create the orchestration services that
realize the pervasive computing scenarios they like to have.

We believe that the presented crowdsourced context model-
ing approach is a fundamental —so far missing— building block
for making pervasive computing reality outside research labs.
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