
Distributed Smart Space Orchestration
Marc-Oliver Pahl

Technische Universität München
Email: pahl@net.in.tum.de

Georg Carle
Technische Universität München

Email: carle@net.in.tum.de

Gudrun Klinker
Technische Universität München

Email: klinker@in.tum.de

Abstract—Many networked devices that can interface their
physical environments are available off-the-shelf or can be built in
2016. A comprehensive management of those Smart Devices is re-
quired to unlock the existing potential. However, the amount and
heterogeneity of the devices make their management difficult. A
suitable abstraction is missing. This paper identifies requirements
on managing Smart Devices from diverse research fields, assesses
relevant existing work, proposes a new management middleware
design, and evaluates it quantitatively and qualitatively. The
presented novel middleware architecture could become an enabler
for a software maker culture.

I. INTRODUCTION

In our daily lives, connected sensors and actuators are
omnipresent. They detect presence or open doors while we
walk through physical spaces. Connecting sensors and actua-
tors to embedded computing systems with a network interface
–enabling remote access– forms so called Smart Devices.
The physical spaces that contain connected Smart Devices
are called Smart Space. For implementing changing scenarios
within the same Smart Space, it becomes attractive to manage
Smart Devices remotely via software. In today’s physical
spaces functionality is often hard wired. In a software managed
Smart Space, functionality could be changed more easily
by running different programs. Shifting functionality from
hardware into exchangeable software increases the flexibility
of a system. Such a shift was the basis of computing like we
know it today [1]. For describing the management of Smart
Devices via software, my thesis1 defines the term Smart Space
Orchestration (S2O) [2].

Smart Space Orchestration is still not reality outside re-
search laboratories in 2016. The concept was first envisioned
at Xerox PARC in 1991. Weiser [11] identified three main
challenges towards an implementation in the real world [11]:
networking support is available today [12]. Smart Device hard-
ware is available off-the-shelf today, or can be created using
platforms such as the Arduino [13]. A so-called hardware
maker culture emerged.

The remaining open challenge that prevents S2O from
spreading into the real world concerns the software [6]. A
suitable tooling remains missing (Sec. III) [2], [14]. My thesis
[2] analyzes requirements on a suitable abstraction for enabling
an S2O software maker culture (Sec. II). It proposes a novel
middleware-based programming methodology (Sec. IV). It
shows how the new abstraction can be used to implement
relevant components for a Smart Space App economy [6]
(Sec. V). It evaluates the middleware prototype quantitatively
and the usability of the novel programming methodology
qualitatively (Sec. VI).

1The thesis is published in [2]. Some of the thesis results are currently
under peer review. Others were already published in [3]–[9]. In addition an
eLearning course was developed and published during the thesis [10]

A. Research Questions

The overall research question of the thesis [2] is, how to
design a programming abstraction that can enable S2O in the
real world. This question can be concretized:

1) Which is a suitable virtual representation of S2O data?
2) Which is a suitable programming abstraction for services

interfacing Smart Devices?
3) Which is a suitable programming abstraction for other

services (e.g. orchestration Apps)?
4) Which other components are required for a software

maker culture for Smart Spaces.

B. Contributions

Major contributions of the presented research are:
● A novel middleware architecture that structures and facil-

itates the implementation of management in distributed,
heterogeneous, dynamically changing environments. The
middleware is called Virtual State Layer (VSL).

● An easy-to-use, dynamically-extensible, self-managing
ontology for modeling Smart Space data [4].

● A novel data-centric service coupling concept [3].
● A security-by-design architecture for future Smart Spaces.
● A hierarchical management architecture for distributed

services within future Smart Spaces.
● A requirements analysis considering a wide range of

research fields.
● A broad survey of existing middleware for S2O.

C. Publications

The thesis is published in [2]. The information model and
the crowdsourced data modeling are published in [4]. The
methodology for creating of a Service Oriented Architecture
(SOA) using data-centric services coupling is published in [3].
Components towards an App economy for Smart Spaces are
presented in [6]. Future application scenarios for the technol-
ogy are described in [5]. An overview on the Virtual State
Layer (VSL) middleware is given in [7]. The general concept
was first introduced in [8]. Some security considerations are
published in [9].

The software produced during this thesis is available open
source [15]. It is under continuous development. A new release
is planned for summer 2016. It significantly improves the
performance (Sec. VI). The software is continuously tested in
the education of Computer Science students (CS) at Technische
Universität München (TUM) [10].

The relevance of S2O on technological, economic, and
societal aspects requires including it into the curriculum at
universities. Consequently, an S2O eLearning course was de-
veloped as part of the thesis [10]. Since summer term 2013 it
is running at TUM with around 20 CS students each semester.978-1-5090-0223-8/16/$31.00 © 2016 IEEE

D. Relevance of the Work

The thesis proposes a novel management framework archi-
tecture for dynamically changing, distributed, and heteroge-
neous environments – the VSL. Diverse management scenarios
can be mapped to a subset of the corresponding requirements.
As a result, this research can be applied for diverse manage-
ment scenarios. Applications from network management (NM)
include managing services for Network Function Virtualization
(NFV), algorithms in Software Defined Networking (SDN),
and the IoT [16]. Beyond the self-purpose of service and device
management, the research results are applicable in domains
such as Industry 4.0 or Smart Buildings. Concrete examples
are managing production lines to dynamically adapt for each
product, saving energy in energy-intense systems, or enabling
new applications such as Ambient Assisted Living (AAL) [2].

The presented research provides a novel data-centric man-
agement framework that could become the base for a software
maker culture for Smart Spaces [2]. By establishing a data-
centric Service Oriented Architecture (SOA), the VSL enables
a new way of developing software. It allows a new engineering
practice based on modularization, reuse, and agile develop-
ment [2], [3]. This role requires the VSL to provide desired
properties by-design such as security, scalability, performance,
dependability, and usability. Though the prototype presented
in [2] shows the feasibility of all described concepts, the
research and development towards a better understanding of
its challenges and opportunities is ongoing2.

The proposed management approach targets enabling a real
world implementation of S2O. S2O has strong implications not
only on technology but also on society [2], [14], [17]: similar to
changing the functionality of a smartphone by installing Apps
today, it may become possible to change the functionality of
a Smart Space by installing Smart Space Apps in the future
[2], [6]. As a long term vision, future Smart Spaces may
behave like a holodeck in Star Trek, transforming into diverse
functional spaces such as a living room, or a kitchen only by
running a different App. The computing paradigm behind S2O,
Pervasive Computing, has the potential to become the third
computing revolution after the introduction of Mainframes
(1960s) and the introduction of Personal Computers (1980s),
fundamentally changing our lives [14]. The thesis fosters
weaving computing “into the fabric of everyday life” [11].

II. REQUIREMENTS ANALYSIS

Smart Space Orchestration (S2O) falls into different re-
search areas. The overall domain is Ubiquitous Computing
research [11]; more concrete Pervasive Computing [18]. There
are several relevant sub domains: The Internet of Things (IoT)
[16] focuses on the technical aspects of connecting Smart De-
vices. Cyber Physical Systems (CPS) focus on managing Smart
Devices via software. Ambient Intelligence (AMI) focuses on
applications interacting with humans. In a spectrum between
hardware (HW) and software (SW), S2O is situated between
CPS and AMI: HW — IoT — CPS — S2O — AMI — SW.
It connects CPS and provides the base for AMI [2].

The analysis in [2] reflects the broad range of affected
domains. It considers hardware, protocol bridging [19], stan-
dardization [20], distributed computing, human psychology,

2http://s2o.net.in.tum.de/, http://www.ds2os.org/

Artificial Intelligence (AI), autonomous computing [21], soft-
ware architecture, and semantic modeling [22]. Major analysis
results are summarized as requirements here.

Bottom-up, the analysis starts with Smart Devices (see (1)
in Fig. 1). Their management interfaces are heterogeneous for
diverse reasons [2]. Policies could eliminate some reasons.
However, technical differences result in heterogeneous com-
munication protocols that must be overcome in software (R1).
Overcoming heterogeneity on any layer of abstraction requires
standardization. Traditional standardization methods such as
ISO standardization [20] are unsuitable for the speed of
innovation and the amount of stakeholders in S2O scenarios
[2], [4]. S2O requires new standardization methods (R2).
The bottom-up analysis concludes with identifying middleware
as a suitable concept to overcome the heterogeneity of dis-
tributed systems as found in future Smart Spaces [2], [23].
While a middleware can cover many aspects of heterogeneity,
it cannot provide access transparency to the diverse Smart
Devices. Access transparency is required (R3) for enabling
portable S2O Apps.
A major problem of existing middleware for S2O (Sec. III)
is that it provides domain-specific functionality. Such func-
tionality limits the possible applications that can run on top
of a middleware. This limitation can be problematic as it
restricts the creativity of developers [17]. More severe, it
prevents the implementation of unsupported S2O scenarios.
A suitable abstraction for S2O must not have domain-specific
functionality built-in (R4).
However, domain-specific functionality significantly facilitates
the implementation of workflows for the corresponding do-
main. Therefore, the dynamic adding of domain-specific func-
tionality should be supported (R4a).
A fundamental problem of existing S2O middleware is the
missing support for modes of referential and temporal cou-
pling. The variety of S2O use cases requires all service
coupling modes to be supported by a suitable middleware (R5).

Top-down, the analysis starts with human psychology. A
descriptive abstraction is more intuitive to use than a procedu-
ral one (R6) [24], [25].
In AI, the human cognition is modeled using the Believe-
Desire-Intention (BDI) model [26]. Simple implementations
of the BDI model are Event-Condition-Action (ECA) rules.
ECA rules are intuitive to create for humans [24], [25]. But
the expressiveness of ECA rules is limited. They can only
process existing data, resulting in reactive behavior. A desired
active behavior would require function calls that can not be
made in ECA rules [27]. These limitations make ECA rules
unsuitable for implementing S2O workflows. However, for
intuitive usability a suitable abstraction for S2O should be as
simple to use as ECA rules are (R7).
Autonomous computing helps making complex systems man-
ageable [28]. A typical implementation is a Monitor-Analyze-
Plan-Execute (MAPE) cycle that can be extended with state
(knowledge; MAPE-K) [21]. A suitable abstraction for S2O
should provide and support autonomous functionality (R8).
Decomposing complex tasks into simpler modules is intuitive
[24], [25]. A software architecture that supports modularization
is a Service Oriented Architecture (SOA) [29]. A suitable
abstraction for S2O should foster service-oriented software
development (R9).
The common denominator of S2O Apps is storing and ex-

changing data. The virtual representation of real world data
is called context [22]. A suitable abstraction for S2O must
support the handling of context (R10).

In a concluding case study [2], the smartphone App
economy is analyzed. It shows what is required to enable
a software maker culture for a new field of technology:
suitable abstractions in the form of 1) runtime environments,
2) Operating Systems (OS), and 3) programming frameworks
that hide the heterogeneity of the underlying systems [2].
1) A suitable system for providing execution portability (see
R3) exists with Java. 2) An OS for a distributed system is
called middleware [23]. Therefore a suitable abstraction for
S2O is a middleware (R11). 3) Regarding framework support,
Smart Devices within a Smart Space are significantly more
heterogeneous and dynamic than the peripherals in a smart-
phone [2]. Therefore an S2O middleware must be dynamically
extensible with device drivers (R12).
Concerning non-functional requirements, it is required that a
suitable middleware framework for S2O is secure, resilient,
and performant (R13).

III. RELATED WORK

In the relevant domains (Sec. II), diverse systems have
been developed. The communities that work for the longest
time on S2O are the Ubiquitous Computing (UbiComp) and
the Pervasive Computing (PerCom) community. Both focus on
applications [2], [30]. On the other side of the spectrum is the
Network Management (NM: NOMS, IM) community. It has a
long experience in systematic management system design.
Currently, the Ubiquitous Computing community has the prob-
lem that it lacks research in systematic foundations for S2O.
The NM community on the other hand only opens slowly
towards new application domains such as the IoT3. This work
follows a novel approach by combining the usability and
flexibility of PerCom with the systematic foundations of NM.

Existing UbiComp/ PerCom middleware is typically tai-
lored for its corresponding research project [2]. Many mid-
dleware designs emerged since 1991. Several peer-reviewed
surveys including [31]–[35] are used to select a representative
sample. The selected solutions can be classified into mid-
dleware that focuses on service management [36]–[40], and
middleware that focuses on data management [41]–[45].

The requirements from Sec. II are used to summarize the
analysis results. The parenthesis contain the corresponding
requirement identifier R0 and the assessment ∈ {+, o,−}.
Most solutions follow a vertical design. Device drivers are
part of the middleware. This is unsuitable for dynamically
integrating the diverse S2O Smart Devices (R1 -). No solution
uses explicit management data models as known from NM.
This makes standardization impossible (R2 -). Using context
as interface between services provides access transparency
(R3 +). Being built for specific scenarios, most middleware
supports only domain-specific workflows and inhibits others
(R4 -). This leads to middleware silos [2]: Apps that run within
one middleware cannot interact with Apps (and Smart Devices)
connected to another middleware. Middleware silos are a major

3There was a special track “On the Management of the Internet of Things”
organized by Jürgen Schönwälder, Anuj Sehgal, and Mauro Tortonesi at
NOMS 2014.

inhibitor for S2O today. Existing middleware provides good
solutions for its specific domains. But different middleware
is not interoperable [2]. No assessed solution supports all
combinations of referential and temporal couplings [3] (R5 -).
This prevents the use of existing middleware as general enabler
for S2O.

Context based interfaces are typically declarative (R6 +).
Only one solution [44] considers simplicity (R7 -). With their
strong encapsulation of services behind context, many solu-
tions support Autonomous Computing paradigms (R9 +). Many
of the solutions are based on context processing (R10 +). All
solutions but [38], [44] are implemented as a middleware
(R11 +). Dynamically integrating new devices is typically not
possible (R12 -). Security is widely not considered in the as-
sessed solutions. Three architectures are used: 1) peer-to-peer,
2) centralized, and 3) distributed with centralized components
such as directories. Depending on those architectures, the
expected resilience and the performance vary (R13 o).

On the other end of the spectrum, a typical NM method-
ology consists of agents that offer descriptive interfaces to
management data on managed devices [46]. The abstract
interfaces are the declarative data models [47] (R1 +, R3 +,
R6 +, R10 +). Those models are typically standardized but
the process and its mechanisms are not suitable for the high
amount and heterogeneity of emerging Smart Devices and their
manufacturers [4] (R2 -). Typically NM frameworks do not
include support for specific functionality (R4 +), making them
suitable as a general enabler. However, typically not all four
coupling modes [2], [3] are supported (R5 -). ECA rules can
be applied but their limitations are not overcome (R7 o). Man-
agement agents are typically working autonomously (R8 +).
Service-orientation is typically not supported as scenarios are
implemented vertically: managers access agents to implement
certain management goals (R9 -). Management frameworks
fulfill parts of the properties of a middleware (R11 o). The
extensibility with drivers is hidden behind the agents’ abstract
interfaces (R12 +). The non-functional properties vary between
different implementations (R13 o).

IV. THE VIRTUAL STATE LAYER (VSL)

The Virtual State Layer (VSL) middleware (R11) is de-
signed using the requirements from Sec. II [2]. The VSL
is the core of the Distributed Smart Space Orchestration
System (DS2OS) framework [15]. DS2OS provides additional
functionality such as a directory for data models, a service
management framework, and an App store.

The VSL is a self-organizing unstructured peer-to-peer
system that manages context data (R10). An autonomous
peer is called Knowledge Agent (KA) (R8). A VSL overlay
is shown as layer (3) in Fig. 1. From a NM perspective,
the VSL extracts the agent functionality from the managed
devices into a separate layer (R3 , R6). The VSL is fully self-
managing, enabling the desired security-by-design, resilience,
and performance properties (R13) [2].

Layer (2a) shows services synchronizing state between
Smart Devices (1) and their virtual representation in the VSL
(3). Layer (2b) shows services implementing other function-
ality such as reasoning, orchestration or user interfaces [2].
Each service (2a, 2b) connects to one KA for storing data

host

Host

Smart Devices

(Adaptation) Services

VSL: Data Nodes

(Orchestration) Services

1

2a

3

2b

Managed Smart Space

5

Context Model
Repository

Global
Repository

4

Context Models

Fig. 1: VSL architecture.

and for retrieving data from other services (R6 , R10). The
Context Model Repository (CMR; 4) is the directory of VSL
data models.

A. Crowdsourced Data Modeling

The VSL implements the blackboard communication pat-
tern. Unlike a classic tuple space, it uses explicit data models
with unique identifiers for tuple discovery.

Each service connects to one KA at start-up time for
getting access to its own state and the states of any other
service connected to the VSL overlay. All services such as
Smart Device-connecting Apps get the same support by the
VSL. This unifies the implementation of diverse services,
facilitating the service development (R1 , R12). The VSL
fosters a separation of service logic (App) and data (KA) [48].
This separation facilitates the development of services.

As identified in Sec. II (R2 , R3) and applied by the
NM community, structuring management data by introducing
models enables service portability. The context models of the
VSL are stored in the global CMR directory (4).
The CMR contains a dynamically extensible semantic type
system. The directory stores tree data structures that are
identified by unique model identifiers (modelID) (R3) [2],
[4]. Context models can inherit from other context models by
referring to their modelID as VSL data type. Combined with an
easy-to-understand XML notation [4], inheritance significantly
facilitates the model creation (Sec. VI). By providing statistics
about the use of certain context models, the CMR implements
a crowdsourced standardization (R2). This standardization is
the base for providing access transparency and portability via
the VSL (R3).

For each service exactly one context model is instantiated
in its KA. Services communicate by accessing each others
data in the VSL. As a result, context models serve as abstract
interface for their services (see Fig. 1) [3]. Having all data
stored and served in the VSL makes data independent of
service implementations enhancing the resilience of the Smart
Space computing back-end (R13).

For discovering specific service data in the VSL, the
VSL type identifier (modelIDs) from the CMR are used. All
KAs autonomously synchronize their directories about where
which context data is available. The incrementally replicated
directories increase the resilience and performance of the KA

overlay (R13). The resulting local type-searches are fast.
Only the type-search is built into the VSL (R4). The special
VSL service coupling (Sec. IV-B) enables adding additional
semantic search-providers at run-time (R4a). Such semantic
search-providers enable a novel kind of dynamically extensible
ontology [22]. This extensible ontology is a novel answer to
the need for describing the dynamically changing management
parameters of the IoT [2], [4].

B. Direct Coupling over Descriptive Interfaces

The VSL allows Apps to couple asynchronously and syn-
chronously (R9). It implements all four modes of referential
and temporal couplings (R4) [3]. Apps couple asynchronously
by querying data stored in the KA overlay. For the synchronous
coupling, there are two modes. The first mode is via subscrip-
tions on regular VSL data nodes. A service can subscribe any
data node it is authorized to (R13). On changes, the KA sends
a notification. The line between the layers (2b) and (3) in
Fig. 1 illustrates such notifications between different services.
The second mode for direct coupling is via so called Virtual
Nodes. Instead of serving the data request itself, a KA triggers
a previously registered Virtual Node callback into a service.
Whether the KA (regular node) or a service (Virtual Node)
is serving a request is transparent for the requesting service
(R3).

The VSL allows access to sub nodes of Virtual Nodes.
The emerging context nodes are called Virtual Subtrees. They
allow passing parameters by accessing virtual VSL data [2],
[3]. Virtual Subtrees enable a transparent extension of the VSL
functionality at run time (R4a). Virtual Subtrees overcome the
restrictions of ECA rules (R7). This enables the implementa-
tion of complex workflows with simple ECA rules.
Virtual nodes enable a direct coupling of services via a de-
scriptive data structure. As a result, the VSL supports service-
oriented software development (R9). Complex functionality
can be decomposed into better manageable, reusable modules.
Decomposition and reuse facilitate the implementation of
complex S2O workflows.

C. The VSL as Named Data Network

The VSL implements a self-organizing Named Data Net-
work (NDN) [49]. It is therefore also an interesting architecture
for investigating properties of a possible future Internet archi-
tecture. The VSL proves that NDN principles are beneficial
for implementing management functionality.

V. APPLICATIONS

In [2], it is shown how the described VSL programming
abstraction (Sec. IV) enables and significantly facilitates the
implementation of site-local service management. It is shown
how the infrastructure for an App economy for Smart Spaces
could be designed around the Smart Space App store (Smart
Space Store; S2Store) to meet properties such as security-by-
design (R13).

Reference implementations for relevant S2O service classes
are presented. The examples include a generic user interface
and an autonomous Smart Device adaptation service. The latter
acts as device driver (R1 , R8 , R12 ; (1) and (2) in figure 1) [2].
The applications show the power and suitability of the VSL
as an enabler for real world S2O.

 0

 50

 100

 150

 200

 250

regular node virtual node

T
im

e
 i
n
 m

s

VSL get operation

Latency under different conditions (10000 samples; 0.001 outlier)

3
6

35

71 3
6

78

114

both services run on the same KA
both services run on a different KA each

difference of the mean values

Fig. 2: Performance of the VSL prototype.

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250

N
u
m

b
e
r

o
f

p
ro

ce
ss

e
d

 r
e
q

u
e
st

s
p

e
r

se
co

n
d

Run time of the measurement in seconds

Throughput in requests/ s per client (mean) [mode: get, stepping: 100]

1600
1500
1400
1300
1200
1100
1000

900
800
700
600
500
400
300
200
100

Fig. 3: Scalability of the VSL prototype.

VI. EVALUATION

The VSL prototype implementation has been evaluated
quantitatively and qualitatively. As described in Sec. I-C, an
S2O eLearning course was created. In this course students
continuously assess the usability of the VSL and reproduce
the following measurement results. The results shown here are
the original results from early 2014 [2].
All measurement results were obtained within a testbed of 36
Intel i5 computers with SSD and 4GB of main memory. All
computers were connected via GBit Ethernet. Each conducted
performance and scalability experiment involves one or mul-
tiple measuring services and a measurement probe service.

The measurement results in Fig. 2 were obtained by
executing a get request on another service’s VSL node 10000
times. The latencies for regular node and Virtual Node accesses
are shown for both services running on the same KA (left),
and both services running on two distributed KAs (right).
The lower candle of each box plot marks the 0.25 quantile.
The line in the box is the median (0.5 quantile). The upper
bound of the box is the 0.75 quantile. 0.1% of the samples
are considered outliers and plotted as dots. Between the two
boxplots the mean values and their difference are shown.
The plot shows little variation in the samples. The mean delay
for a get operation on a regular node is 35ms. Accessing
a remote KA adds about 36ms of delay. In the current
implementation all KAs are interconnected. One hop is thereby
the maximum observable coupling delay (see Fig. 1).
The implementation of Virtual Node callbacks currently uses
a single socket and several lookups. This explains why the
measured delay is more than double of that of a regular VSL
node access. The measured values for the set operation are
very similar to the shown ones of the get operation [2].
The delays are relevant for knowing how many services can
be coupled over the VSL within a certain time. A delay
up to 160ms is considered not noticeable by humans [50].
The authors of [51] found out that up to 500ms are okay
for a telesurgery, which can be considered as a time critical
application. Consequently, several services can be coupled over
the VSL while preserving an interactive experience. Many
S2O use cases are not highly time critical. Correspondingly
the amount of services that can be coupled in a VSL SOA
increases within the required time boundaries.

Fig. 3 shows the throughput per second per service over
time. A single remote service was accessed via get on a regular

node from 100 up to 1600 distributed services in parallel (see
legend). In each experiment round, all participating services
sent 100 consecutive requests in parallel. The plotted mean
shows that the VSL KAs scale well. All requests got answered
and the time of the entire experiment increased linearly with
the amount of parallel requests. For up to 400 parallel requests
the delay for a single remote service coupling is <500ms
(interactive). The measured values for the set operation are
close to the shown ones of the get operation [2]. The access
to Virtual Nodes is slower as can be seen in Fig. 2.

In addition to the system measurements, a user study
was conducted. The survey shows that the CS students at
TUM were able to adapt to the VSL programming abstraction
quickly and liked working with it [2]. In addition to the survey,
the time for implementing given S2O scenarios was measured.
All participants implemented a given complex workflow in
less than 20h. This value is good compared to an experiment
conducted in [45] where a comparably complex tasks took
experienced programmers about 120h.

VII. CONCLUSION

This paper introduced the VSL middleware design. The
VSL combines the systematic design from NM with the
dynamic adaptation required for managing the diversity and
dynamism found in the PerCom domain. Answering the re-
search questions from Sec. I-A: 1) An easy-to-use, dynamically
extensible virtual representation for S2O data was introduced
(Sec. IV-A). 2), 3) A data-centric programming abstraction for
S2O was introduced (Sec. IV). It supports all service categories
equally. This was demonstrated with different applications in
Sec. V and Sec. VI. 4) The service management framework
and the S2Store illustrate how a software maker culture for
Smart Spaces could technically be implemented (Sec. V).

It may take some time until holodecks become reality
(Sec. I-D). In the meantime the presented research can enable
the implementation of novel applications such as production
lines that individually adapt for each product, automated
energy saving, or Ambient Assisted Living (AAL).
Enabling a software maker culture is an important step towards
real world Smart Spaces [52]. New possibilities bring new
challenges (Sec. I-D). Challenges worth being considered can
be found in science fiction [53]. A societal challenges that is
closer to today’s reality is technology constraining the freedom
of people to implement workflows their preferred way [17].

REFERENCES

[1] J. von Neumann, “First draft of a report on the EDVAC,” IEEE Annals
of the History of Computing, vol. 15, no. 4, pp. 27–75, 1993.

[2] M.-O. Pahl, “Distributed Smart Space Orchestration,” Ph.D. disserta-
tion, Technische Universität München, München, 2014. [Online]. Avail-
able: http://pahl.de/download/publications/dissertationPahl2014.pdf

[3] ——, “Data-Centric Service-Oriented Management of Things,” in IM
2015, Ottawa, Canada, 2015, pp. 484–490.

[4] M.-O. Pahl and G. Carle, “Crowdsourced Context-Modeling as Key to
Future Smart Spaces,” in NOMS 2014, 2014, pp. 1–8.

[5] M.-O. Pahl, H. Niedermayer, H. Kinkelin, and G. Carle, “Enabling
Sustainable Smart Neighborhoods,” in SustainIT, Palermo, Italy, 2013.

[6] M.-O. Pahl and G. Carle, “Taking Smart Space Users into the De-
velopment Loop: An Architecture for Community Based Software
Development for Smart Spaces,” in UbiComp. New York, NY, USA:
ACM, 2013, pp. 793–800.

[7] ——, “The Missing Layer - Virtualizing Smart Spaces,” in PerCom
2013 adjunct, San Diego, USA, 2013, pp. 139–144.

[8] M.-O. Pahl, C. Niedermeier, M. Schuster, A. Müller, and G. Carle,
“Knowledge-based middleware for future home networks,” in Wireless
days. Paris, France: IEEE, 2009.

[9] H. Niedermayer, R. Holz, M.-O. Pahl, and G. Carle, “On using home
networks and cloud computing for a future internet of things,” in FIS.
Springer, 2009.

[10] M.-O. Pahl. (2014) Smart Space Orchestration Course Material.
[Online]. Available: http://pahl.de/download/dissertation/ds2os.lab/

[11] M. Weiser, “The Computer for the 21st Century,” Scientific American,
vol. 265, no. 3, pp. 94–104, 1991.

[12] I. T. U. ITU, “Global ICT developments, 2001-2015,” Tech. Rep., 2015.

[13] M. Banzi, “Getting Started with Arduino, Ill edition,” Getting Started
with Arduino, Ist edition, Oct. 2008.

[14] G. D. Abowd, “What next, ubicomp?: celebrating an intellectual disap-
pearing act,” in UbiComp. ACM, 2012.

[15] System, Distributed Smart Space Orchestration. http://www.ds2os.org/.
[Online]. Available: http://www.ds2os.org/

[16] I. T. U. ITU, “ITU Report ”The Internet of Things”,” Geneva, Tech.
Rep. 7, 2005.

[17] P. Dourish and S. Mainwaring, “Ubicomp’s Colonial Impulse,” Ubi-
Comp, 2012.

[18] K. Lyytinen and Y. Yoo, “Issues and Challenges in Ubiquitous Com-
puting ,” Communications of the ACM, vol. 45, no. 12, 2002.

[19] H. Zimmermann, “OSI Reference Model–The ISO Model of Archi-
tecture for Open Systems Interconnection,” Communications, IEEE
Transactions on, vol. 28, no. 4, pp. 425–432, 1980.

[20] ISO and IEC, “ISO/IEC Directives, Part 1,” ISO/IEC, 2012.

[21] J. O. Kephart and D. M. C. Chess, “The vision of autonomic comput-
ing,” Computer, vol. 36, no. 1, 2003.

[22] U. Aßmann, S. Zschaler, and G. Wagner, “Ontologies, Meta-models, and
the Model-Driven Paradigm,” in Ontologies for Software Engineering
and Technology, C. Calero, F. Ruiz, and M. Piattini, Eds. Berlin
Heidelberg: Springer, 2006, pp. 249–273.

[23] P. A. Bernstein, “Middleware: a model for distributed system services,”
Communications of the ACM, vol. 39, no. 2, pp. 86–98, 1996.

[24] P. N. Johnson-Laird, The Computer and the Mind: An Introduction to
Cognitive Science. London: Fontana Press, 1993.

[25] F. Détienne, “Software Design - Cognitive Aspects,” 2002.

[26] M. P. Georgeff, B. Pell, M. E. Pollack, M. Tambe, and M. Wooldridge,
“The Belief-Desire-Intention Model of Agency,” in ATAL 98. Springer-
Verlag, Jul. 1998.

[27] M. J. Wooldridge, “An Introduction to MultiAgent Systems,” 2009.

[28] Z. Movahedi, M. Ayari, R. Langar, and G. Pujolle, “A Survey of
Autonomic Network Architectures and Evaluation Criteria,” IEEE Com-
munications Surveys & Tutorials, vol. 14, no. 2, pp. 464–490, 2012.

[29] T. Erl, Service-Oriented Architecture, ser. Concepts, Technology, and
Design. Prentice Hall, 2005.

[30] Y. Liu, J. Goncalves, D. Ferreira, S. Hosio, and V. Kostakos, “Identity
crisis of ubicomp?: mapping 15 years of the field’s development and
paradigm change,” in UbiComp Adjunct. ACM, Sep. 2014.

[31] K. Henricksen, J. Indulska, and T. McFadden, “Middleware for Dis-
tributed Context-Aware Systems ,” DOA, 2005.

[32] C. Endres, A. Butz, and A. MacWilliams, “A survey of software
infrastructures and frameworks for ubiquitous computing,” Mobile In-
formation Systems, 2005.

[33] P. Bellavista, A. Corradi, M. Fanelli, and L. Foschini, “A survey of
context data distribution for mobile ubiquitous systems,” Computing
Surveys, vol. 44, no. 4, 2012.

[34] V. Raychoudhury, J. Cao, M. Kumar, and D. Zhang, “Middleware for
pervasive computing: A survey,” Pervasive and Mobile Computing,
2012.

[35] M. Knappmeyer, S. L. Kiani, E. S. Reetz, N. Baker, and R. Tonjes, “Sur-
vey of Context Provisioning Middleware,” Communications Surveys &
Tutorials, IEEE, vol. 15, no. 3, pp. 1492–1519, 2013.

[36] M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell,
and K. Nahrstedt, “Gaia,” ACM SIGMOBILE CCR, vol. 6, no. 4, pp.
65–67, 2002.

[37] J. P. Sousa and D. Garlan, “The Aura Software Architecture: an
Infrastructure for Ubiquitous Computing,” 2003.

[38] C. Dixon, R. Mahajan, S. Agarwal, A. J. B. Brush, B. Lee, S. Saroiu,
and P. Bahl, “An operating system for the home,” in NSDI, 2012.

[39] C.-F. Sørensen, M. Wu, T. Sivaharan, G. S. Blair, P. Okanda, A. Friday,
and H. Duran-Limon, “A context-aware middleware for applications in
mobile Ad Hoc environments,” in MPAC. ACM, 2004.

[40] S. Dawson-Haggerty, A. Krioukov, J. Taneja, S. Karandikar, G. Fierro,
N. Kitaev, and D. Culler, “BOSS: Building Operating System Services,”
NSDI, 2013.

[41] A. K. Dey, D. Salber, M. Futakawa, and G. D. Abowd, “An Architecture
to Support Context-Aware Applications,” UIST, 1999.

[42] T. Gu, H. K. Pung, and D. Q. Zhang, “A service-oriented middleware
for building context-aware services,” Journal of Network and Computer
Applications, vol. 28, no. 1, pp. 1–18, 2005.

[43] J. E. Bardram, “The Java Context Awareness Framework (JCAF) – A
Service Infrastructure and Programming Framework for Context-Aware
Applications,” in Pervasive Computing. Berlin, Heidelberg: Springer,
2005, pp. 98–115.

[44] B. Guo, D. Zhang, and M. Imai, “Toward a cooperative programming
framework for context-aware applications,” Personal and ubiquitous
computing, vol. 15, no. 3, pp. 221–233, 2010.

[45] R. Grimm, “One.world: Experiences with a Pervasive Computing Ar-
chitecture ,” Pervasive Computing, 2004.

[46] J. Schonwalder, “Protocol-Independent Data Modeling: Lessons
Learned from the SMIng Project,” IEEE Communications Magazine,
vol. 46, no. 5, pp. 148–153, 2008.

[47] A. Pras and J. Schoenwaelder, “On the Difference between Information
Models and Data Models,” IETF, Tech. Rep., 2003.

[48] R. Grimm, J. Davis, B. Hendrickson, E. Lemar, A. Macbeth, S. Swan-
son, T. Anderson, B. Bershad, G. Borriello, S. Gribble, and D. Wether-
all, “Systems Directions for Pervasive Computing,” in Workshop on Hot
Topics in Operating Systems, 2001, pp. 147–151.

[49] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
SIGCOMM CCR, vol. 44, no. 3, 2014.

[50] B. Shneiderman and C. Plaisant, Designing the User Interface, 4th ed.
Pearson Education, 2005.

[51] M. D. Fabrlzio, B. R. Lee, D. Y. Chan, D. Stoianovici, T. W. Jarrett,
C. Yang, and L. R. Kavoussi, “Effect of Time Delay on Surgical Per-
formance During Telesurgical Manipulation,” Journal of Endourology,
vol. 14, no. 2, pp. 133–138, 2000.

[52] Gartner. (2015) Gartner Says 6.4 Billion Connected ”Things” Will
Be in Use in 2016, Up 30 Percent From 2015. [Online]. Available:
http://www.gartner.com/newsroom/id/3165317

[53] S. Kubrick. (1968) 2001: A Space Odyssey.

